Contents

Chapter 1 Safety Information and Precautions	3 -
1.1 Safety Information	3 -
1.2 General Precautions	4 -
Chapter 2 Product Information	6 -
2.1 Products Nameplate	6 -
2.2 Products Model Number	6 -
2.3 Products Dimensions	8 -
2.4 Technical Specifications	9 -
2.5 Brake Chopper & Brake Resistor List	10 -
Chapter 3 Mechanical Installation and Electrical Installation	11 -
3.1 Mechanical Installation	11 -
3.1.1 Installation Environment Requirements	11 -
3.1.2 Installation Clearance Requirements	11 -
3.1.3 Routine Maintenance	12 -
3.2 Electrical Installation	12 -
3.2.1 Inverter Main Loop Terminal	12 -
3.2.2 Caution of Power Terminal Wiring	12 -
3.2.3 Description of Control Terminals	13 -
3.2.4 Terminal Wiring Diagram	15 -
Chapter 4 Keypad and Display Operation	17 -
4.1 General Type Operation Panel	17 -
4.1.1 General Type Keyboard Function Description	17 -
4.1.2 Mini Type Operation Panel (0.75-2.2KW)	
4.1.3 Mini Type Keyboard Function Description (0.75-2.2KW)	
4.1.4 General Type Panel Operation	18 -
4.2 Cases Study	19 -
4.2.1 Inverter Three-wire Setting	19 -
4.2.2 Multi-speed settings (mini type)	21 -
4.2.3 Application of Inverter Constant Pressure Water Supply Funct	
4.2.4 Application of Multi-inverter Network Function (Taking three	
4.2.5 Application of one inverter controls multiple pumps	24 -
Chapter 5 Parameters	26 -
5.1 Parameters Overview	26 -

5.2 Parameters Description	32 -
5.2.1 F0 Parameter Group – Basic Parameters	32 -
5.2.2 F1 Parameter Group – Terminal IO Function Selection	36 -
5.2.3 F2 Parameter Group - VF Curve	41 -
5.2.4 F3 Parameter Group – Start/Stop Process Control	42 -
5.2.5 F4 Parameter Group – Multi-segment Command	45 -
5.2.6 F5 Parameter Group – PID & Constant Pressure Water Supply Parameters	47 -
5.2.7 F6 Parameter Group – Extend Parameter	51 -
5.2.8 F7 Parameter Group – Communication Parameters	
5.2.9 F8 Parameter Group – Motor Control Mode	56 -
5.2.10 F9 Parameter Group – Motor Control Advanced Parameter	58 -
5.3 Monitoring Parameter	62 -
Chapter 6 Communication	64 -
6.1 Modbus-RTU Communication Protocol	64 -
6.2 Modbus Register Definition	65 -
6.3 Modbus Application Cases	66 -
6.3.1 Setting Communication Parameters	66 -
6.3.2 Enable Communication Function	66 -
Chapter7 Maintenance and Troubleshooting	67 -
7.1 Routine Maintenance	67 -
7.1.1 Regular Inspection	67 -
7.1.2 Long-time Storage	67 -
7.2 Faults and Solutions	67 -
7.3 Common Faults and Solutions	72 -
7.4 Warranty Agreement	73 -
Warranty Card	74 -

Chapter 1 Safety Information and Precautions

1.1 Safety Information

Please read this chapter carefully while installing and commissioning the inverter and be sure to follow the safety precautions required in this chapter. We will assume no liability or responsibility for any injury or loss caused by improper operation.

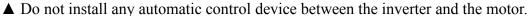
In this manual, safety precautions are classified into the following two categories:

Indicates there is a risk of electric shock, which may cause equipment damage or personal injury if not avoided.

Warning

Indicates potential risks, which could result in equipment damage or property loss if not avoided

Danger


- ★Do not install the equipment if you find water seepage, component missing or damage upon unpacking!
- ★Do not use the strip to supply power to the inverter.
- ★Do not conduct any high voltage insulation and withstand voltage test.

Danger

- ★Before touching the inverter, disconnect the power supply; After power off, terminal and internal will exist high pressure for ten minutes, during when don't touch any input/output terminals.
- ★Rotating motor may feed electrical energy back to the inverter, before touching it, please ensure that the motor has stopped, or disconnected with the inverter.
- ★Before connecting the cable, make sure there is no voltage at the power terminal.
- ★Ground the inverter as standard. The ground wire must be able to withstand the maximum fault current limited by the fuse or circuit breaker.
- ▲ Handle the equipment with care during transportation.
- ▲ Keep away from combustibles and electrical conductors.
- ▲ Inverters are best used indoors, IP20 inverters must be installed in a level 2 pollution environment or in the cabinet of the IP54 and higher level of protection.
- ▲ Ensure adequate heat dissipation while installing the inverter and do not drill holes near it, for drilling dust and metal debris could fall into the inverter, which may lead to danger.
- ▲ Do not drop wire end or screw into the inverter.
- ▲ Never connect the power cables to the output terminals (U, V, W) of the inverter.

- ▲ When the control cable is near the power line, keep a minimum spacing of 100 mm and arrange a 90-degree crossover. Make sure all the terminals have been fastened using the appropriate torque.
- ▲ If the enable input signal is valid, the driven motor may start directly after being powered
- ▲ Ensure that the supply voltage, frequency and phase are in accordance with the inverter
- ▲ When motor autotune, pay attention that the motor may rotate, which may cause danger.
- ▲ The inverter can control the motor to run above or below the rated speed. When needing

the motor to run overrated speed, you can confirm whether it is feasible with motor manufacturers.

- ▲ Do not power on or off the inverter frequently, which may be easy to shorten its service life. Please power on again ten minutes after power off.
- ▲ In the area with an altitude of more than 1000m, derating is required.
- ▲ Do not try to repair the inverter when errors and faults occur. Contact us for more help.

1.2 General Precautions

1. Requirement on Residual Current Device (RCD)

The inverter generates high leakage current during running, which flows through the protective earthing (PE) conductor. Thus install a type-B RCD at primary side of the power supply. When selecting the RCD, you should consider the transient and steady-state leakage current to ground that may be generated at startup and during running of the inverter. You can select a specialized RCD with the function of suppressing high harmonics or a general-purpose RCD with relatively large residual current.

2. Motor Insulation Test

Perform the insulation test when the motor is used for the first time, or when it is reused after being stored for a long time, or in a regular check-up, in order to prevent the poor insulation of motor windings from damaging the inverter. The motor must be disconnected from the inverter during the insulation test. A 500V mega-Ohm meter is recommended for the test. The insulation resistance must not be less than 5 $M\Omega$.

3. Thermal Protection of Motor

If the rated capacity of the motor selected does not match that of the inverter, especially when the inverter's rated power is greater than the motor's, adjust the motor protection parameters on the operation panel of the Inverter or install a thermal relay in the motor circuit for protection.

4. Running at Over 50 Hz

The inverter provides frequency output of 0 to 500 Hz. If the inverter is required to run at over 50 Hz, consider the capacity of the mechanical devices.

5. Vibration of Mechanical Device

The inverter may encounter the mechanical resonance point at some output frequencies, which can be avoided by setting the skip frequency.

6. Motor Heat and Noise

The output of the inverter is pulse width modulation (PWM) wave with certain harmonic frequencies, and therefore, the motor temperature, noise, and vibration are slightly greater than those when the inverter runs at grid power (50 Hz).

7. Varistor or capacitor on output side of the Inverter

Do not install the capacitor for improving power factor or lightning protection voltage-sensitive resistor on the output side of the inverter because the output of the inverter is PWM wave. Otherwise, the inverter may suffer transient over-current or even be damaged.

8. Contactor at the I/O Terminal of the Inverter

When a contactor is installed between the input side of the inverter and the power supply, the inverter must not be started or stopped by switching the contactor on or off. If the inverter has to be operated by the contactor, ensure that the time interval between switching is at least one hour since frequent charge and discharge will shorten the service life of the capacitor inside the inverter.

When a contactor is installed between the output side of the inverter and the motor, do not turn off the contactor when the inverter is active. Otherwise, modules inside the inverter may be damaged.

9. When External Voltage is Out of Rated Voltage Range

The inverter must not be used outside the allowable voltage range specified in this manual. Otherwise, the inverter's components may be damaged. If required, use a corresponding voltage step-up or step-down device.

10. Prohibition of Three-phase Input Changed into Two-phase Input

Do not change the three-phase input of the inverter into two-phase input. Otherwise, a fault will result in, or the inverter will be damaged.

11.Lightning Shock Protection

The inverter has a built-in lightning overcurrent protection device, it has certain self-protection ability for inductive lightning. But user should also install lightning protection device at the front end of the inverters in frequent lightning area.

12. Temperature and De-rating

The regular using temperature of this inverter is -10°C- +40°C. De-rating using is required when temperature is more than 40°C. De-rating by 1.5% for every degree increase in ambient temperature. The highest ambient temperature is 50°C.

13. Altitude and De-rating

In places where the altitude is above 1000m and the cooling effect reduces due to thin air, it is necessary to de-rate the inverter. When the altitude is above 1000m, de-rating by 1% for 100m increase in altitude. The highest altitude is 3000m.

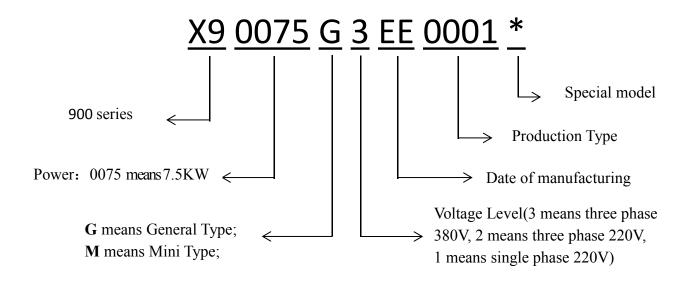
14. Some Special Usage

If the user needs to use a method other than the recommended wiring diagram in this manual, such as shared DC bus, please consult us.

15.Scrap

The electrolytic capacitors on the main circuits and PCB may explode when they are burnt. Poisonous gas is generated when the plastic parts are burnt. Please treat them as industrial waste.

16.About Adaptable Motor


- The default setting of this inverter is for the 4-pole cage asynchronous induction motors. For other types of motors, select proper parameters in the inverter.
- The cooling fan and rotor shaft of non-variable-frequency motor are coaxial, which results in reduced cooling effect when the rotational speed declines. If variable speed is required, add a more powerful fan or replace it with variable-frequency motor in applications where the motor overheats easily.
- The standard parameters of the adaptable motor have been configured inside the inverter. It is still necessary to perform motor auto-tuning or modify the default values based on actual conditions. Otherwise, the running result and protection performance will be affected.
- The inverter may alarm or even be damaged when short-circuit exists on cables or inside the motor. Therefore, perform insulation short-circuit test when the motor and cables are newly installed or during routine maintenance. During the test, make sure that the inverter is disconnected from the tested parts.

Chapter 2 Product Information

Our inverters have been tested and inspected before leaving our factory. Before unpacking the product, please check product packaging for shipping damage caused by careless transportation and whether the specifications and type of the product complies with the order. If there is any question, please contact the supplier of the products, or directly contact us.

2.1 Products Nameplate

900 series inverters are named following rules below:

2.2 Products Model Number

900M, Single Phase Input: 200~240V±10%, Three Phase Input: 380~480V±10%, 50/60Hz						
Adapted	motor	Rated output	Fromo			
кw	HP	current(A)	Frame			
0.75	1	4	A00M			
1.5	2	7	A00M			
0.75	1	2.5	A00M			
1.5	2	3.7	A00M			
2.2	3	5.1	A00M			
Single Phase I	nput: 200~2	240V±10%,50/60Hz				
Adapte	d motor	Rated output	_			
KW	НР	current(A)	Frame			
0.75	1	4	A00			
1.5	2	7	A00			
2.2	3	10	A01			
	Adapted KW 0.75 1.5 0.75 1.5 2.2 Single Phase KW 0.75 1.5	Adapted motor KW HP 0.75 1 1.5 2 0.75 1 1.5 2 2.2 3 Single Phase Input: 200~2 Adapted motor KW HP 0.75 1 1.5 2	Adapted motor Rated output current(A) KW HP current(A) 0.75 1 4 1.5 2 7 0.75 1 2.5 1.5 2 3.7 2.2 3 5.1 Single Phase Input: 200~240V±10%, 50/60Hz Adapted motor Rated output current(A) 0.75 1 4 1.5 2 7			

900-0040G1	4.0	5	18	A01
	Three Phase	Input: 200~2	40V±10%, 50/60Hz	
	Adapte	d motor	Rated output	Frame
Inverter Model	KW	HP	current(A)	riaille
900-0040G2	4	5	18.1	A02
900-0055G2	5.5	7.5	28	A03
900-0075G2	7.5	10	37.1	A03
900-0110G2	11	15	49.8	A04
900-0150G2	15	20	65.4	A05
900-0185G2	18.5	25	81.6	A05
900-0220G2	22	30	97.7	A06
900-0300G2	30	40	122.1	A07
900-0370G2	37	50	157	A07
900-0450G2	45	60	185	A07
900-0550G2	55	70	215	A08
900-0750G2	75	100	320	A09
	Three Phase Ir	put: 380~4	80V±10%, 50/60Hz	
	Adapte	d motor	Rated output	_
Inverter Model	KW	НР	Current(A)	Frame
900-0007G3	0.75	1	2.5	A00
900-0015G3	1.5	2	3.7	A00
900-0022G3	2.2	3	5.1	A00
900-0040G3	4	5	8.5	A01
900-0055G3	5.5	7.5	13	A01
900-0075G3	7.5	10	16	A02
900-0110G3	11	15	25	A02
900-0150G3	15	20	32	A03
900-0185G3	18.5	25	38	A03
900-0220G3	22	30	45	A04
900-0300G3	30	40	60	A04
900-0370G3	37	50	75	A05
900-0450G3	45	60	90	A05
900-0550G3	55	70	110	A06
900-0750G3	75	100	150	A07
900-0930G3	93	125	170	A07
900-1100G3	110	150	210	A08
900-1320G3	132	175	250	A08
900-1600G3	160	210	300	A09

900-1850G3	185	245	340	A09
900-2000G3	200	260	380	A09
900-2200G3	220	300	415	A09
900-2500G3	250	350	470	A10
900-2800G3	280	370	520	A10
900-3150G3	315	400	600	A10
900-3550G3	355	420	650	A11
900-4000G3	400	530	725	A11
900-4500G3	450	595	820	A11
900-5000G3	500	595	980	A11
900-5600G3	560	740	1080	A12
900-6300G3	630	830	1200	A12

2.3 Products Dimensions

No.	Power	Dimension(mm)			Installation Size(mm)		Holeφ
		Н	W	D	H1	W1	
A00M	0.75~1.5KW/220V 0.75~2.2KW/380V	153	86	123	143	76	4.5mm
A00	0.75~2.2KW/220V 0.75~2.2KW/380V	170	86	141	157	75	5mm
A01	4.0~5.5KW/380V 4.0/220V	188	96	171	176	83.6	5mm
A02	7.5~11KW	228	114	192	214.5	98.7	5mm
A03	15~18.5KW	290	160	182	269	143	6.5mm
A04	22~37KW	328	193	217	305	172	8.5mm
A05	45~55KW *	344	228	223	324	206	8.5mm
A06	45~55KW	490	327.5	238	459	202.5	10mm
A07	75~93KW	526	300	304	504	200	9mm
A08	110~132KW	690	370	360	636.5	232	10mm
A09	160~220KW	720	410	360	690	330	10mm
A10	250~315KW	1060	650	392.5	1030	420	12mm
A11	355~500KW	1361.5	818	404.5	1280	520	16mm
A12	560~630KW	1330	786	410	1295	500	16mm

^{*}Due to Product upgrade, size update without prior notice, Consult staff for details.

2.4 Technical Specifications

Item		Specifications			
	Maximum Frequency	Vector Control: 0~500Hz V/F Control: 0~500Hz			
	Carrier Frequency	0.5kHz~16kHz; the carrier frequency will be automatically adjusted according to the load characteristics.			
Basic Functions	Input Frequency Resolution	Digital Setting: 0.1Hz Analog Setting: 0.01V corresponding maximum frequency ×0.1%			
	Control Mode	Open Loop Vector Control(SVC); V/F Control			
	Startup Torque	0.5Hz/150%(SVC);			
	Speed Range and Precision	1: 100(SVC); ±0.5%(SVC)			
	Overload Capability	150% rated current 60s ; 180% rated current 3s			
	Torque Boost	0.1%~30.0%			
	V/F Curve	Line Type Square Type			
	Acc. / dec Curve	Straight line or S curve acceleration and deceleration mode Acceleration and deceleration time range between 0.0 to 500.0s.			
	DC Brake	DC Brake Frequency: 0.00Hz to maximum frequency. Brake time: 0.0s to 36.0s			
	Multi-speed Running	It can realize at maximum of 4 segments speed running via the control terminal.			
Basic	Built-in PID	It is easy to realize process-controlled closed loop control system.			
Functions	Over-voltage/current Stall Control	It can limit the running voltage/current automatically and prevent frequent over-voltage/current tripping during the running process.			
	Motor Over-temperature Protection	Acceptable motor temperature sensor input (PT100, PT1000)			
	Timing Control	Timing control function: set time range 0.0~6500.0Min			
	Bus Support	Support Site Bus: Modbus			
	Protection Function	It can implement power-on motor short-circuit detection, output phase loss protection, over current protection, over voltage protection, under voltage protection, overheating protection and overload protection, which can be turned on or shielded as required.			

	Item	Specifications
	Running Command	Operation panel reference, control terminal reference, and
	Source	communication reference
		Digital reference, analog signal reference, multi-segment
	Target Frequency Source	speed reference, PI control reference, and communication
		reference
Running	Control Signal Input	5 digital input;
	Terminal	2 analog input, support 0~10V、4~20mA、0~20mA、20~0mA、
	Terrinia	20~4mA and 10~0V signal
	Control Signal Output	1 relay output, 2 analog input.
	Terminal	2 analog output, support 0~10V、4~20mA、0~20mA、
		20~0mA \ 20~4mA and 10~0V 0~20mA signal
	Using Place	Indoor, and be free from direct sunlight, dust, corrosive gas,
	Oshing Flace	combustible gas, oil smoke, vapor, drip or salt.
	Altitude	0~4000m; Derating use when more than 1000m (decrease
	Aititude	by 1% per 100 meters)
	Ambient Temperature	-10 $^\circ\!$
	Ambient remperature	temperature of 40 $^\circ\!$
Environme	Humidity	Less than 95%RH, without condensing
nt	Vibration	Less than 5.9m/s (0.6g)
	Storge Temperature	−20 °C~+60°C
	IP Level	IP20
	Pollution Level	PD2
	Power Distribution	TN, TT
	System	114, 11

2.5 Brake Chopper & Brake Resistor List

\/oltogo(\/\	Invertor Dower(KM)	Brake Chopper Specification		\/oltogo(\/)
Voltage(V)	Inverter Power(KW)	W	Ω	Voltage(V)
Cingle Dhase	0.75	80	150	
Single Phase 220V	1.5	100	100	Single Phase 220V
2200	2.2	100	70	
	0.75	150	300	
	1.5	150	220	
Three Phase	2.2	250	200	Three Phase 380V
380V	4.0	300	130	Three Phase 380V
	5.5	400	90	
	7.5	500	65	

Note: models above 5.5KW need external brake unit. Contact the supplier for more information.

Chapter 3 Mechanical Installation and Electrical Installation

3.1 Mechanical Installation

3.1.1 Installation Environment Requirements

- 1) The inverter should be installed vertically and fixed on the mounting support or smooth plane with screws.
- 2) Ensure that the installation environment meets the environmental requirements in Section 2.5.
- 3) Keep away from combustibles and areas where water may drench and have enough space around it for heat dissipation.

3.1.2 Installation Clearance Requirements

The clearance that needs to be reserved varies with the power class of the inverter, as shown in the following figure:

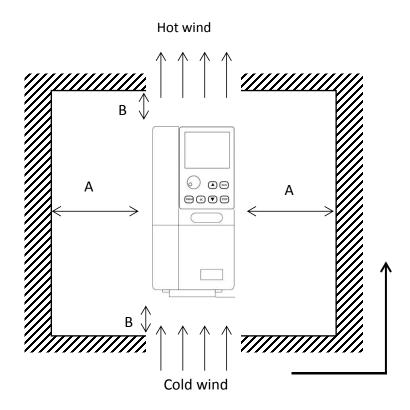


Figure. 3.1.2.1 Installation clearance requirements on the inverters of different power classes:

Power Class	Clearance Requirements(mm)		
0.75kW~22kW	A≥10 B≥200		
30kW~37kW	A≥50	B≥200	
45kW~110kW	A≥50	B≥300	

Heat dissipation of inverter is distributed from bottom to top. When multiple inverters work, they are usually installed side by side. In the case of upper and lower row installation, the heat of lower row inverter will cause the temperature rise of upper row equipment and lead to failure, so measures such as

installation of heat insulation guide plate should be taken.

3.1.3 Routine Maintenance

- (1) Environmental temperature must be kept within the limits set out in Section 2.5.
- (2) The radiator fan must rotate easily and be free from dust.
- (3) The cabinet in which the inverter is installed should be free of dust and condensation, and the ventilation fan and air filter should work properly to ensure adequate airflow.

3.2 Electrical Installation

3.2.1 Inverter Main Loop Terminal

Mark	Terminal Name	Function Description		
	Three Phase Power	AC input three-phase power connection point, for		
R、S、T	Input Terminal	single phase inverter, connect R、S terminal.		
11 1/ 14/	Inverter Output	Connect three phase motors.		
U、V、W	Terminal			
D(1) DD(1)	External Brake	External Brake Resistor		
P(+)、PB(-)	Terminal	External prake nesistor		
후	Earth Terminal PE	Earth Terminal		

3.2.2 Caution of Power Terminal Wiring

1)Input Power R、S、T:

- Inverter input side connection, no phase sequence requirements.
- The specifications and installation methods of the external power wiring should comply with the local regulations and related IEC standards.
- Please refer to the following table for power cable wiring:

Inverter Model		Recommended Breaker Specifications	Recommended Contactor Specification	Recommended Input Power Cable (m²)	Recommended Motor Cable(m²)	Recommended Control Cable(m²)
Single 22	0.75KW	16	10	2.5	2.5	1.5
gle Ph 220V	1.5KW	20	16	4	2.5	1.5
Phase 0V	2.2KW	32	20	6	4	1.5
#	0.75KW	10	10	2.5	2.5	1.5
Three	1.5KW	16	10	2.5	2.5	1.5
Ph	2.2KW	16	10	2.5	2.5	1.5
Phase	4KW	25	16	4	4	1.5
380V	5.5KW	32	25	6	6	1.5
>	7.5KW	40	32	6	6	1.5

Caution of terminal wiring:

1. Inverter input side:

▲ Three-phase power supply should be connected to R, S, T terminal, do not have to consider the phase sequence; Single-phase power supply (220V model) should be connected to the R and S terminal.

▲ Proper protection devices installed on input and distribution lines should comply with local safety regulations.

▲ Protection can be provided by installing a suitable fuse at the power supply entry line. Fuses used must comply with local regulations.

▲ Residual high voltage exists at terminals of DC bus DC+ and DC- after power off. Therefore, power off for 10 minutes before wiring.

2. Inverter output side:

▲ Capacitor or surge absorber cannot be connected to the output side of the inverter, Otherwise, inverter protection or even damage will be caused.

▲ The selection of brake resistance should refer to the recommended value, and the wiring distance should be less than 5m.

▲ When the length of motor cable is more than 100m, AC output reactor should be installed near the inverter.

▲ In order to reduce the interference of inverter output to other equipment, it is recommended to use shielded cable for motor cable.

▲ Motor terminal box connection: Most general-purpose motors can operate at dual voltages, as indicated on the motor nameplate. The operating voltage of the motor is usually selected when the motor is installed, star connection or angle connection. The star connection is usually the one with the highest voltage rating.

Motor Input Voltage	Motor Nameplate Voltage	Мо	otor Wiring Mode
230 VAC	230/400 VAC	Dalla	DELTA A
400 VAC	400/690 VAC	Delta	
400 VAC	230/400 VAC	Star	STAR A

3.2.3 Description of Control Terminals

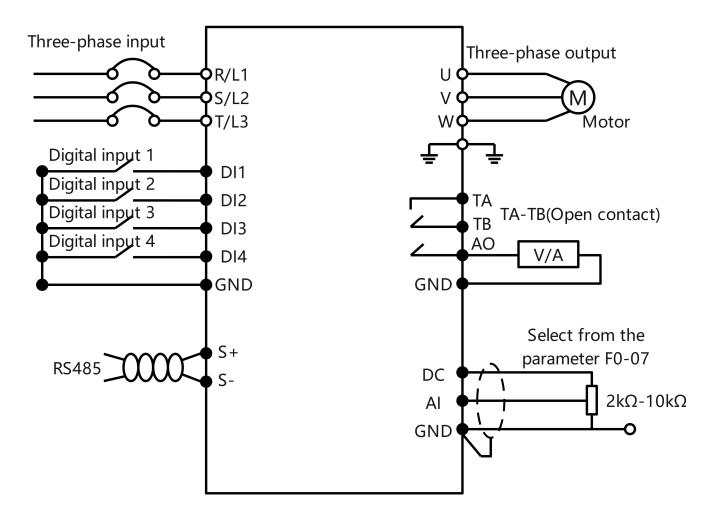
Description of Control Terminals of mini type inverter:

TA	ТВ	DC	ΑI	DI1	DI2	DI3	DI4	GND	АО	S+	S-	
----	----	----	----	-----	-----	-----	-----	-----	----	----	----	--

*S+ S- is for external expansion, not standard;

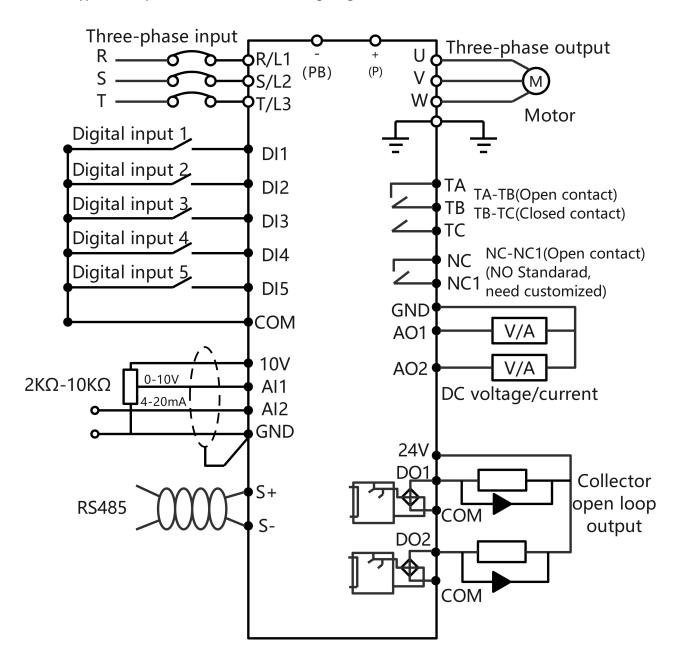
Description of Control Terminals of general type inverter:

NC	NC1	DI1	DI2	DI3	DI4	DI5	S-	S+	AI1	AO1
TA	ТВ	TC	DO1	СОМ	DO2	24V	AO2	GND	AI2	10V


^{*}NC NC1 is a non-standard function and needs to be produced according to the order requirements.

Control Terminals Description:

Туре	Terminal	Terminal Name	Function Description		
Power Output	+10V-GND	Terminal of 10V power output	Provide +10V power supply for external units, with maximum output current of 10mA. It is generally used as the operating power supply for the external potentiometer. The potentiometer resistance range is $1-5k\Omega$.		
Analog Innut	AI1-GND	Analog input terminal 1	F0-07 set voltage and current mode.		
Analog Input	AI2-GND	Analog input terminal 2	F0-07 set voltage and current mode.		
	DI1-COM	Digital Input 1			
Digital	DI2-COM	Digital Input 2	1. Optical coupling isolation,bipolar input.		
Digital Input	DI3-COM	Digital Input 3			
Input	DI4-COM	Digital Input 4			
	DI5-COM	Digital Input 5			
Analog	AO1-GND	Analog output	F0-07 set voltage and current mode.		
Output	AO2-GND	Analog output	F0-07 set voltage and current mode.		
Digital	DO1-COM	Digital output	Optical coupling isolation, dual polarity open collector output. Output voltage range: 0-24V.		
Output	DO2-COM	Digital output	Optical coupling isolation, dual polarity open collector output. Output voltage range: 0-24V.		
Dolov Costracit	T/B-T/C	Normally closed	Contact driving capacity: 250Vac, 3A;		
Relay Output	T/A-T/B	Normally open	30Vdc, 1A		
485 Communicati on Interface	S+/S-	485 communication interface	Respectively are the positive end of 485 differential signal and the negative end of 485 differential signal (reference ground: GND). Standard 485 communication interface, please use twisted pair or shielded cable.		

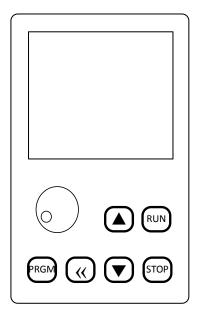

3.2.4 Terminal Wiring Diagram

Mini type three-phase 380V terminal wiring diagram:

*s+/s- need to be connected with an external RS485 module.

General type three-phase 380V terminal wiring diagram:

^{*}NC NC1 is not standard function, production depends on purchasing order.


^{*0.75~5.5}KW built-in braking unit, external braking resistor connected to P and PB terminals.

^{*}Inverter above 5.5KW/380V need to be connected with an external braking unit.

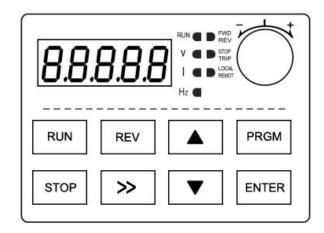
Chapter 4 Keypad and Display Operation

4.1 General Type Operation Panel

You can modify the parameters, monitor the working status, and start or stop the inverters by operating the panel.

Operation Panel Diagram (General Type 900G)

Function Indicator Description:


FWD: Forward Running Indicator REV: Reverse Running Indicator

STOP: Stop Indicator ALARM: Fault Indicator

4.1.1 General Type Keyboard Function Description(900G)

1.1 General Ty	.1 General Type Reyboard Lanction Description(2000)					
Key Sign	Name	Function Description				
PRGM	Program/Enter	Long press more than 3 seconds enter/back main menu. Press to read /write parameter.				
A	Increase	Increase the data or the function code.				
•	Decrease	Decrease the data or the function code.				
<<	Shift	Select the parameter modification and display content.				
RUN	Run	Panel start.				
STOP	Stop/Reset	Stop/reset operation.				

4.1.2 Mini Type Operation Panel (900M 0.75-2.2KW)

Operation Panel Diagram (Mini Type 900M)

Running Indicator: Light on when inverter is running; light off when inverter stops.

LOCAL/Remote mode indicator: Light off when local speed adjustment; light on when remote speed adjustment.

FWD/REV: Light off when inverter is forward running; Light on when inverter is reverse running.

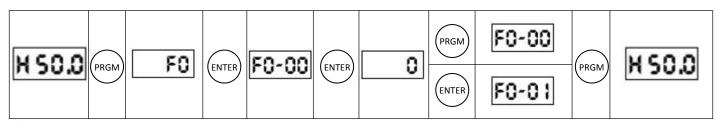
4.1.3 Mini Type Keyboard Function Description (900M 0.75-2.2KW)

Key Sign	Description	Key Sign	Description
RUN	Running indicator: Frequency converter running often bright; Extinguish when it stops.		Increase the number upward.
LOCAL REMOT	Local/remote mode indicator: When the local speed is off; Remote speed control often bright.	•	Decrease the number downward.
FWD REV	Forward/reverse indicator light: Extinguish at positive turn; Inversion often bright; .	RUN	In panel control mode, for running operation.
PRGM	Enter the parameter interface from the main interface or return.	STOP	Stop operation; Or fault reset operation.
ENTER	Save or modifying parameters.	REV	In panel control mode, it is used for reverse and jog switching.
>>	Switch between interfaces; Or switch the number of digits.		

4.1.4 General Type Panel Operation

(1) Running and stopping

The default mode is the panel control mode (parameter F0-00 = 0). The Run key run the inverter and the STOP key controls the inverter to stop. When the inverter is running, the main interface display frequency value; When the inverter stops, the frequency value flashes.


(2) Switching running interface

When the inverter is running, the screen displays the main interface by default. At this time, press the very, and the screen will switch among various operating interfaces, starting with the output frequency, and then displaying the motor speed, output voltage, output current and output power in turn. Examples are shown in the following figure.

(3) Parameter switching

When displaying main interface, press "PRGM" to enter the first-level menu interface, and then select the parameter group you want to access through "Up/Down" in the first-level menu interface; Press "ENTER" to enter the second-level menu interface from the first-level menu interface, where you can select the parameters which can be modified. Press "ENTER" again, and you will enter the third-level menu interface from the second-level menu interface. At this time, you can check or modify the value of this parameter.

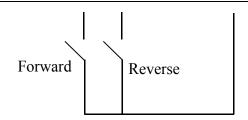
When the inverter displays the third-level menu interface, you can press "PRGM" or "ENTER" to return to the second-level menu interface but pressing "PRGM" will not save the modified parameters, only pressing "ENTER" will save the parameters. When the inverter displays the first-level menu interface, press "PRGM" to return to the main interface.

(4) Selection of parameters

When the second-level menu interface is displayed, press "Up" or "Down" to switch the parameters you want to access.

The inverter also has monitoring parameters. The way to view them is to find U0 in the first-level menu interface, and then press "ENTER" to enter the monitoring parameter access interface.

(5) Reset parameters


The parameter F0-24 can be used to reset the parameter. The default value of F0-24 is 0. Change it to 1 and press "ENTER". You can reset the parameters to factory default values.

4.2 Cases Study

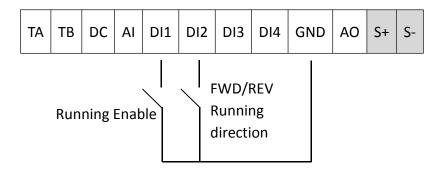
4.2.1 Inverter Three-wire Setting

0: Two-wire mode 1: (Mini type 900M)

TA TB DC AI DI1 DI2 DI3 DI4 GND AO S	+ S-
--------------------------------------	------

Parameter settings:

F0-00=1 (external terminal control)


F1-06=1 (Two-wire type 1)

F1-00=1

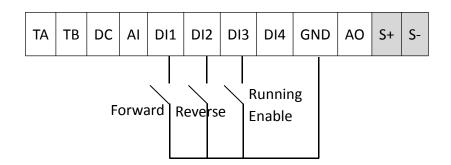
F1-01=2

In this control mode, DI1 and GND are turned on, and the inverter is running forward; DI2 and GND are turned on, and the inverter runs in reverse.

1: Two-wire mode 2: (Mini type 900M)

Parameter settings:

F0-00=1 (external terminal control)


F1-06=1 (Two-wire type 2)

F1-00=1

F1-01=2

In this control mode, when DI1 and GND are turning on, and the inverter is running forward; When DI1 and GND are on, DI2 and GND are on, and the inverter runs in reverse.

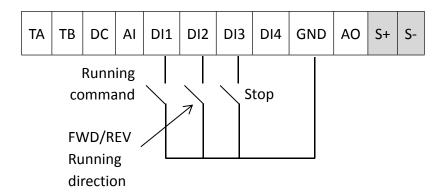
2: Three-wire mode 1: (Mini type 900M)

Parameter settings:

F0-00=1 (External terminal control)

F1-06=2 (Three-wire type 1)

F1-00=1


F1-01=2

F1-02=3

In this control mode, when DI3 and GND are turned on, DI1 and GND are turned on, and the inverter

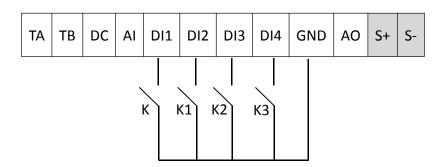
runs in a forward direction; When DI3 and GND are on, DI2 and GND are on, and the inverter runs in reverse. During normal start-up and operation, DI3 and GND must be conducted, and the commands of DI1 and DI2 will take effect at the edge of conducting action. The running state of the inverter will be subject to the last key action of these three switches.

3: Three-wire mode 2: (Mini type 900M)

Parameter settings:

F0-00=1 (External terminal control)

F1-06=3 (Three-wire type 2)


F1-00=1

F1-01=2

F1-02=3

In this control mode, when DI3 and GND are turned on, DI1 and GND are turned on, and the inverter runs in a forward direction; When DI3 and GND are turned on and DI1 and GND are turned on, turn DI2 and GND on, and the inverter will run in reverse. During normal startup and operation, DI3 and GND must be kept on, and the command of DI1 will take effect as soon as it is turned on.

4.2.2 Multi-speed settings (mini type 900M)

Parameter settings:

F0-00=1 (external terminal control)

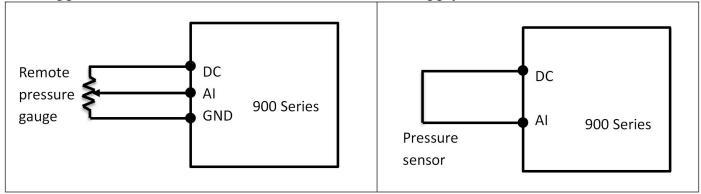
F0-01=4 (Frequency source is selected as multi-speed)

F1-00=1 (DI1 terminal connected to external switch K)

F1-01=8 (DI2 terminal connected to external switch K1)

F1-02=9 (DI3 terminal connected to external switch K2)

F1-03=10 (DI4 terminal connected to external switch K3)


Parameter group F1 defines multi-segment speed function, 8 represents multi-segment command 1,9 represents multi-segment command 2, and 10 represents multi-segment command 3, 3 terminals can be

combined into 8 speed segments, and the frequency values of 8 speed segments can be set by F4-01~F4-08 respectively, and the corresponding truth table is as follows:

К3	K2	K1	Command Setting	Corresponding parameters
OFF	OFF	OFF	Multi-segment command 0	F4-01
OFF	OFF	ON	Multi-segment command 1	F4-02
OFF	ON	OFF	Multi-segment command 2	F4-03
OFF	ON	ON	Multi-segment command 3	F4-04
ON	OFF	OFF	Multi-segment command 4	F4-05
ON	OFF	ON	Multi-segment command 5	F4-06
ON	ON	OFF	Multi-segment command 6	F4-07
ON	ON	ON	Multi-segment command 7	F4-08

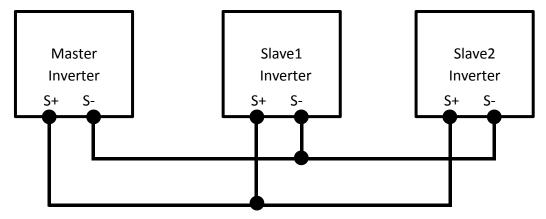
When the frequency source is multi-speed, the function code F4-01-F4-07 can directly set the frequency value of multi-speed. In addition to the multi-segment speed function, multi-segment command can also be used as a given source of PID, or as a voltage source of V/F separation control, etc., to meet the need of switching between different given values.

4.2.3 Application of Inverter Constant Pressure Water Supply Function

(Mini type inverter)

Parameter settings:

F0-00=0 or 1 (Panel or external terminal starts)


F0-01=6 (Constant pressure water supply function mode)

F5-02=0 or 1 (PID feedback source, 0 is generally connected to the remote pressure gauge, and 1 is generally connected to the pressure sensor)

F5-08=0/1/2/3 (Sensor type selection, $0:0^{10}$ V input can be selected; $1:4^{20}$ mA input; $2:0^{5}$ V input; 3:0.5V $^{4}.5$ V input)

F5-09 (Sensor range)

4.2.4 Application of Multi-inverter Network Function (Taking three inverters as an example)

1. Three inverters network, multi-pump master and slave control mode

Parameters setting:

Master	Slave 1	Slave 2
F0-26=3 (3 inverters network master setting) F5-32=0(multi-pump master and slave control) F5-37(adding pump frequency) F5-38(under-pressure adding pump time) F5-39(reducing pump frequency) F5-40(over-pressure reducing pump time)	F0-26=11 (slave 1 in the network setting)	F0-26=12 (slave 2 in the network setting)

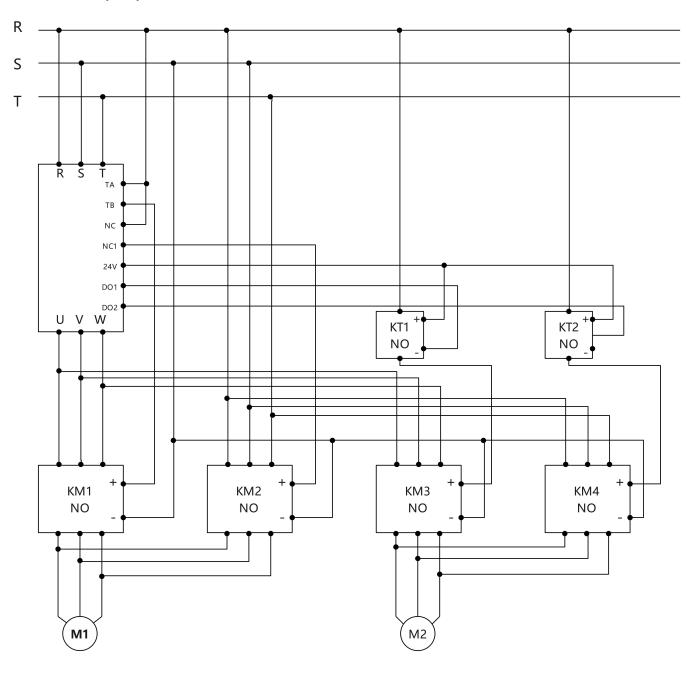
2. Three inverters network, multi-pump synchronous control mode

Parameters setting:

Master	Slave 1	Slave 2
F0-26=3(3 inverters network master setting)	F0-26=11	F0-26=12
F5-32=1(multi-pump synchronous control)	(slave 1 in the	(slave 2 in the network setting)
F5-35(alternating pump period)	network setting)	

3. Three inverters network, multi-pump one for use one for standby control mode Parameters setting:

Master	Slave 1	Slave 2
F0-26=3(3 inverters network master	F0-26=11	F0-26=12
setting)	(slave 1 in the	(slave 2 in the network
F5-32=2(multi-pump one for use one for	network setting)	setting)
standby control)		


4. Three inverters network, standby master running mode; This function is applicable to any of the above three modes; Only slave 1 can be set as the standby master

Parameters setting:

Master	Slave 1	Slave 2
F0-26=3	F0-26=11(slave 1 in the network setting)	F0-26=12
(3 inverters network	F5-33=0/1/2(0: The standby master controls	(slave 2 in the network
master setting)	other slaves in the network stop together	setting)
F5-32=0/1/2	1: The standby master controls other slaves in	
	the network run as the F5-34 setting	
	frequency at constant speed	
	2: The standby master controls other slaves in	
	the network run at constant pressure(This	
	mode requires the standby master to connect	
	to the pressure sensor)	
	F5-34(Standby master running frequency)	
	F5-46=1(Standby master and slave quantity)	

4.2.5 Application of one inverter controls multiple pumps

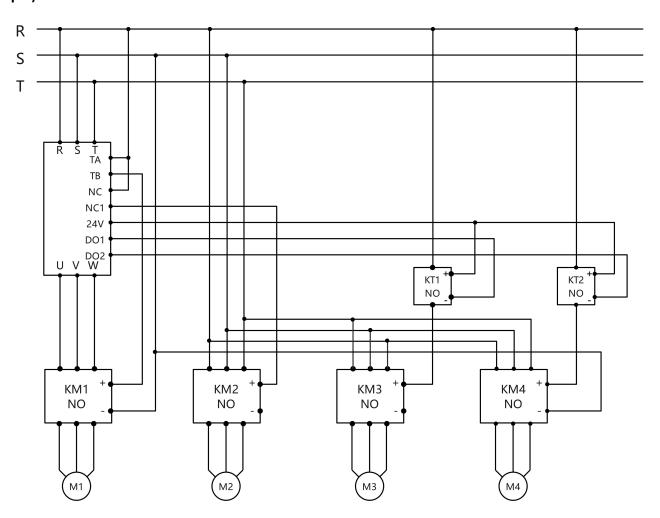
1. Two pumps alternate mode

Parameters setting:

F0-26=07(Two pumps alternate automatically)

F5-35(Alternating pump period)

F5-37(Adding pump frequency)


F5-38(Under-pressure adding pump time)

F5-39(Reducing pump frequency)

F5-40(Over-pressure reducing pump time)

F5-45=1(Number of pumps running at the same time)

2. Fix one pump for inverter mode(The wiring diagram takes one for inverter, three for grid power as an example)

Parameters setting:

F0-26=17/18/19(17: One for inverter, one for grid power(Fix pump 1 for inverter, pump 2 for grid power, do not alternate; 18: One for inverter, two for grid power(Fix pump 1 for inverter, pump 3 for grid power, do not alternate; 19: One for inverter, three for power conversion(Fix pump 1 for inverter, pump 2/3/4 for power frequency, don't alternate)

F5-37(Adding pump frequency)

F5-38(Under-pressure adding pump time)

F5-39(Reducing pump frequency)

F5-40(Over-pressure reducing pump time)

Chapter 5 Parameters

The symbols in the function code table are described as follows:

- "☆": The parameter can be modified when the inverter is in either stop or running state.
- "★": The parameter cannot be modified when the inverter is in the running state.
- "●": The parameter is the measured value in real-time and cannot be modified.
- "*": The parameter is factory parameter and can be set only by the manufacturer, not available for user.
- "▲": The parameter is factory parameter and can be set only by the manufacturer, not available for user.

5.1 Parameters Overview

Function Code	Name	Function Code	Name
F0-00	Command source selection	F0-14	Running direction
F0-01	Main frequency source selection	F0-15	Speed tracking start
F0-02	Auxiliary frequency source selection	F0-16	Preset frequency
F0-03	Frequency source selection	F0-17	Running action frequency below lower limit frequency
F0-04	Acceleration time	F0-18	Command source & frequency source binding
F0-05	Deceleration time	F0-19	JOG/REV key function selection
F0-06	DC output selection	F0-20	STOP key function
F0-07	Analog input/output signal format	F0-21	Jog running frequency
F0-08	Halt mode	F0-22	Jog acceleration time
F0-09	Upper limit frequency preset	F0-23	Jog deceleration time
F0-10	Lower limit frequency preset	F0-24	Restore factory parameters
F0-11	Torque boost	F0-25	Select display menu type
F0-12	Torque boost cut-off frequency	F0-26	Water pump running mode
F0-13	Carrier frequency		
Function Code	Name	Function Code	Name
F1-00	DI1 terminal function selection	F1-18	Relay output current reaches 2 set value
F1-01	DI2 terminal function selection	F1-19	Relay output current reaches 2 bandwidth
F1-02	DI3 terminal function selection	F1-20	Relay1 output delay time
F1-03	DI4 terminal function selection	F1-21	Relay2 output delay time
F1-04	DI5 terminal function selection	F1-22	DO1 output delay time
F1-05	DI1~DI5 terminal valid mode selection	F1-23	DO2 output delay time
F1-06	Terminal command mode	F1-24	Al1 gain

F1-07	Relay terminal valid state selection	F1-25	AI1 offset
F1-08	Relay1 function selection	F1-26	AI2 gain
F1-09	Relay2 function selection	F1-27	AI2 offset
F1-10	DO1 output function selection(collector output)	F1-28	AO1 output function selection
F1-11	DO2 output function selection(collector output)	F1-29	AO2 output function selection
F1-12	Relay output frequency reaches 1 set value	F1-30	AO1 gain
F1-13	Relay output frequency reaches 1 bandwidth	F1-31	AO1 offset
F1-14	Relay output frequency reaches 2 set value	F1-32	AO2 gain
F1-15	Relay output frequency reaches 2 bandwidth	F1-33	AO2 offset
F1-16	Relay output current reaches 1 set value	F1-34	DI delay time
F1-17	Relay output current reaches 1 bandwidth		
Function	Name	Function	Name
Code	Hame	Code	Nume
F2-00	V/F curve setting	F2-11	VF over-current stall action current
F2-01	Multi-point V/F frequency point 1	F2-12	VF over-current stall enable
F2-01 F2-02	Multi-point V/F frequency point 1 Multi-point V/F voltage point 1	F2-12 F2-13	VF over-current stall enable VF over-current stall inhibition gain
F2-02	Multi-point V/F voltage point 1	F2-13	VF over-current stall inhibition gain VF multiple over-current stall action
F2-02 F2-03	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2	F2-13 F2-14	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient
F2-02 F2-03 F2-04	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2	F2-13 F2-14 F2-15	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain
F2-02 F2-03 F2-04 F2-05	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3	F2-13 F2-14 F2-15 F2-16	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage
F2-02 F2-03 F2-04 F2-05 F2-06	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3 Multi-point V/F voltage point 3	F2-13 F2-14 F2-15 F2-16 F2-17	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage VF over voltage stall enable VF over-voltage stall suppression
F2-02 F2-03 F2-04 F2-05 F2-06 F2-07	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3 Multi-point V/F voltage point 3 Multi-point V/F frequency point 4	F2-13 F2-14 F2-15 F2-16 F2-17 F2-18	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage VF over voltage stall enable VF over-voltage stall suppression frequency gain VF over-voltage stall suppression
F2-02 F2-03 F2-04 F2-05 F2-06 F2-07	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3 Multi-point V/F voltage point 3 Multi-point V/F frequency point 4 Multi-point V/F voltage point 4	F2-13 F2-14 F2-15 F2-16 F2-17 F2-18	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage VF over voltage stall enable VF over-voltage stall suppression frequency gain VF over-voltage stall suppression voltage gain Maximum frequency limit of
F2-02 F2-03 F2-04 F2-05 F2-06 F2-07 F2-08	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3 Multi-point V/F voltage point 3 Multi-point V/F frequency point 4 Multi-point V/F voltage point 4 Multi-point V/F frequency point 5	F2-13 F2-14 F2-15 F2-16 F2-17 F2-18	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage VF over voltage stall enable VF over-voltage stall suppression frequency gain VF over-voltage stall suppression voltage gain Maximum frequency limit of
F2-02 F2-03 F2-04 F2-05 F2-06 F2-07 F2-08 F2-09 F2-10 Function	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3 Multi-point V/F voltage point 3 Multi-point V/F frequency point 4 Multi-point V/F voltage point 4 Multi-point V/F voltage point 5 Multi-point V/F voltage point 5	F2-13 F2-14 F2-15 F2-16 F2-17 F2-18 F2-19 F2-20	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage VF over voltage stall enable VF over-voltage stall suppression frequency gain VF over-voltage stall suppression voltage gain Maximum frequency limit of over-voltage stall
F2-02 F2-03 F2-04 F2-05 F2-06 F2-07 F2-08 F2-09 F2-10 Function code	Multi-point V/F voltage point 1 Multi-point V/F frequency point 2 Multi-point V/F voltage point 2 Multi-point V/F frequency point 3 Multi-point V/F voltage point 3 Multi-point V/F voltage point 4 Multi-point V/F voltage point 4 Multi-point V/F voltage point 5 Multi-point V/F voltage point 5 Name	F2-13 F2-14 F2-15 F2-16 F2-17 F2-18 F2-19 F2-20 Function code	VF over-current stall inhibition gain VF multiple over-current stall action current compensation coefficient V/F over- magnetizing gain VF over-voltage stall action voltage VF over voltage stall enable VF over-voltage stall suppression frequency gain VF over-voltage stall suppression voltage gain Maximum frequency limit of over-voltage stall

F3-02	Start DC braking current	F3-16	Dead time of forward & reverse rotations		
F3-03	Start DC braking time	F3-17	Reverse rotation control		
F3-04	DC braking initial frequency at stop	F3-18	Brake utilization ratio		
F3-05	DC braking waiting time at stop	F3-19	Brake chopper action voltage		
F3-06	DC braking current at stop	F3-20	Speed tracking mode		
F3-07	DC braking time at stop	F3-21	Speed tracking		
F3-08	Acc./Dec. mode	F3-22	Speed tracking current loop Kp		
F3-09	Time proportion of S-curve initial-segment	F3-23	Speed tracking current Ki		
F3-10	Time proportion of S-curve end segment	F3-24	Speed tracking current value		
F3-11	Acceleration time 2	F3-25	Speed tracking current lower limit		
F3-12	Deceleration time 2	F3-26	Speed tracking voltage increasing time		
F3-13	Acc. time1 & acc. time 2 frequency switching point	F3-27	Demagnetizing time		
Function code	Name	Function code	Name		
F4-00	Multi-segment command 0 frequency source	F4-14	PLC segment 1 running time		
F4-01	Multi-reference 0 frequency	F4-15	PLC segment 1 acc./dec. time selection		
F4-02	Multi-reference 1 frequency	F4-16	PLC segment 2 running time		
F4-03		F4 47	PLC segment 2 acc./dec. time		
	Multi-reference 2 frequency	F4-17	PLC segment 2 acc./dec. time selection		
F4-04	Multi-reference 2 frequency Multi-reference 3 frequency	F4-17	·		
F4-04 F4-05			selection		
	Multi-reference 3 frequency	F4-18	selection PLC segment 3 running time PLC segment 3 acc./dec. time		
F4-05	Multi-reference 3 frequency Multi-reference 4 frequency	F4-18 F4-19	PLC segment 3 running time PLC segment 3 acc./dec. time selection		
F4-05	Multi-reference 3 frequency Multi-reference 4 frequency Multi-reference 5 frequency	F4-18 F4-19 F4-20	selection PLC segment 3 running time PLC segment 3 acc./dec. time selection PLC segment 4 running time PLC segment 4 acc./dec. time		
F4-05 F4-06 F4-07	Multi-reference 3 frequency Multi-reference 4 frequency Multi-reference 5 frequency Multi-reference 6 frequency	F4-18 F4-19 F4-20 F4-21	selection PLC segment 3 running time PLC segment 3 acc./dec. time selection PLC segment 4 running time PLC segment 4 acc./dec. time selection		
F4-05 F4-06 F4-07	Multi-reference 3 frequency Multi-reference 4 frequency Multi-reference 5 frequency Multi-reference 6 frequency Multi-reference 7 frequency	F4-18 F4-19 F4-20 F4-21	selection PLC segment 3 running time PLC segment 3 acc./dec. time selection PLC segment 4 running time PLC segment 4 acc./dec. time selection PLC segment 5 running time PLC segment 5 running time		
F4-05 F4-06 F4-07 F4-08 F4-09	Multi-reference 3 frequency Multi-reference 4 frequency Multi-reference 5 frequency Multi-reference 6 frequency Multi-reference 7 frequency PLC running mode	F4-18 F4-19 F4-20 F4-21 F4-22 F4-23	selection PLC segment 3 running time PLC segment 3 acc./dec. time selection PLC segment 4 running time PLC segment 4 acc./dec. time selection PLC segment 5 running time PLC segment 5 acc./dec. time selection		
F4-05 F4-06 F4-07 F4-08 F4-09	Multi-reference 3 frequency Multi-reference 4 frequency Multi-reference 5 frequency Multi-reference 6 frequency Multi-reference 7 frequency PLC running mode PLC power off save selection	F4-18 F4-19 F4-20 F4-21 F4-22 F4-23	selection PLC segment 3 running time PLC segment 3 acc./dec. time selection PLC segment 4 running time PLC segment 4 acc./dec. time selection PLC segment 5 running time PLC segment 5 acc./dec. time selection PLC segment 6 acc./dec. time		

			selection			
Function code	Name	Function code	Name			
F5-00	PID reference source	F5-25	Antifreezing function enable			
F5-01	PID reference value	F5-26	Antifreezing running frequency			
F5-02	PID feedback source	F5-27	Antifreezing running time			
F5-03	PID action direction	F5-28	Antifreezing running period			
F5-04	Acc. PID proportional gain Kp	F5-29	Auto start enable			
F5-05	Acc. PID integral time Ki	F5-30	Auto start delay time			
F5-06	Dec. PID proportional gain Kp	F5-31	Reserved			
F5-07	Dec. PID integral time Ki	F5-32	Multi-pump network mode			
F5-08	Sensor type	F5-33	Standby master running mode			
F5-09	Sensor scale	F5-34	Standby master 1 running frequency			
F5-10	Sensor zero deviation	F5-35	Alternating pump switching period			
F5-11	Sensor full scale deviation	F5-36	Adding pump pressure deviation			
F5-12	Dormant frequency	F5-37	Adding pump frequency			
F5-13	Dormant delay time	F5-38	Under-pressure adding pump time			
F5-14	Dormant pressure deviation	F5-39	Reducing pump frequency			
F5-15	Dormant dec. frequency step	F5-40	Over-pressure reducing pump time			
F5-16	Dormant dec. judging time	F5-41	PID feedback loss detection value			
F5-17	Wake up pressure	F5-42	Burst pipe pressure			
F5-18	Pressure upper limit	F5-43	Burst pipe judging time			
F5-19	Water shortage detection time	F5-44	Reserved			
F5-20	Water shortage detection frequency	F5-45	Maximum number of pumps running at the same time			
F5-21	Water shortage detection current	F5-46	Standby master and slave quantity			
F5-22	Water shortage detection pressure	F5-47	Secondary target pressure setting			
F5-23	Water shortage restart time interval	F5-48	Adding pump switching delay			
F5-24	Water shortage auto restart pressure	F5-49	Grid power and frequency			
			conversion switching delay			
Function code	Name	Function code	Name			
F6-00	Zero-level menu display data auto switching	F6-15	Start protection selection			
F6-01	Parameters modify attribute	F6-16	Fault enable selection 1			
F6-02	LED2 display data selection (dual	F6-17	Fault enable selection 2			
	display reserved parameter)					
F6-03	User password	F6-18	Fault auto reset times			
F6-04	Setting accumulative power-on	F6-19	Fault auto reset interval time			

	achieving time		
F6-05	Regular running time	F6-20	Drop load protection selection
F6-06	Carrier frequency adjusting with temperature	F6-21	Drop load detection level
F6-07	Carrier frequency adjusting start temperature	F6-22	Drop load detection time
F6-08	Carrier frequency adjusting time	F6-23	Voltage sag function selection
F6-09	DPWM switching upper limit frequency	F6-24	Voltage sag judging voltage
F6-10	Excessive speed deviation detection value	F6-25	Voltage sag recovery judging tine
F6-11	Excessive speed deviation detection time	F6-26	Voltage sag action judging voltage
F6-12	Motor overload protection gain	F6-27	Voltage sag gain
F6-13	External temperature sensor type	F6-28	Voltage sag integral coefficient
F6-14	Overtemperature protection threshold	F6-29	Voltage sag action deceleration time
Function code	Name	Function code	Name
F7-00	Local address	F7-11	Torque reception data offset
F7-01	Baud rate	F7-12	Torque reception data gain
F7-02	Data format	F7-13	Frequency reception data offset
F7-03	Communication timeout	F7-14	Frequency reception data gain
F7-04	Master and slave control valid (For 900M, this parameter is MODBUS data communication format, see F7-19)	F7-15	Salve frequency forward maximum deviation
F7-05	Master and slave selection	F7-16	Salve frequency reverse maximum deviation
F7-06	Number of slaves	F7-17	Droop control
F7-07	Slave follows master command	F7-18	Reserved
F7-08	Slave data reception	F7-19	MODBUS data communication format
F7-09	Master and slave communication timeout time	F7-20	Enable old inverter Modbus
F7-10	Master and slave control communication transmission period		
Function code	Name	Function code	Name
F8-00	Motor rated power	F8-10	Torque set value
F8-01	Motor rated voltage	F8-11	Asynchronous motor stator resistance
F8-02	Motor rated current	F8-12	Asynchronous motor rotor

			resistance
F8-03	Motor rated frequency	F8-13	Asynchronous motor leakage inductance
F8-04	Motor rated speed	F8-14	Asynchronous motor mutual inductance reactance
F8-05	Permanent magnet motor back EMF coefficient	F8-15	Asynchronous motor no-load current
F8-06	Motor control mode	F8-16	Synchronous motor stator resistance
F8-07	Motor parameter self-detection	F8-17	Synchronous motor D-axis inductance
F8-08	Speed/torque control selection	F8-18	Synchronous motor Q-axis inductance
F8-09	Torque setting source selection		
Function code	Name	Function code	Name
F9-00	High speed area switching frequency	F9-21	Maximum torque ratio current enable
F9-01	Speed loop proportional gain at high speed	F9-22	Convexity gain coefficient
F9-02	Speed loop integral time of high-speed segment	F9-23	Starting carrier frequency
F9-03	Low speed segment switching frequency	F9-24	SVC low-speed carrier frequency
F9-04	Speed loop proportional gain at low speed	F9-25	Low speed carrier frequency switching frequency
F9-05	Speed loop integral time of low-speed segment	F9-26	Low-speed maximum excitation current
F9-06	Velocity loop filtering time constant	F9-27	Low-speed excitation current switching frequency
F9-07	Slip compensation coefficient	F9-28	Low-speed excitation current switching frequency bandwidth
F9-08	Maximum output voltage coefficient	F9-29	Synchronous motor initial position detection mode
F9-09	Torque control forward maximum frequency	F9-30	Synchronous motor initial position identification current initial value
F9-10	Torque control reverse maximum frequency	F9-31	Synchronous motor initial position compensation angle
F9-11	Torque acceleration time	F9-32	Synchronous electrical sensing current
F9-12	Torque deceleration time	F9-33	Synchronous motor back EMF identification initial current

F9-13	M-axis current loop KP	F9-34	Synchronous motor back EMF identification final current
F9-14	M-axis current loop KI	F9-35	Synchronous motor tuning current loop KP
F9-15	T-axis current loop KP	F9-36	Synchronous motor tuning current loop Ki
F9-16	T-axis current loop KI	F9-37	Reserved
F9-17	Synchronous motor flux weakening mode	F9-38	Reserved
F9-18	Synchronous motor flux weakening coefficient	F9-39	Reserved
F9-19	Flux weakening integral multiple	F9-40	Reserved
F9-20	Output voltage saturation margin		

5.2 Parameters Description

5.2.1 F0 Parameter Group – Basic Parameters

Parameter	Description	Minimum	Default	Maximum	Unit	Change	
F0.00		Value	Value	Value		Permission	
F0-00	Command Source Selection	0	0	3	-	\Rightarrow	
	0: Panel control. Press the RU	N key of the	inverter to ru	ın and press t	he STOP k	ey to stop.	
	1: Terminal control. It is direc	tly controlled	d by the inver	ter control te	erminal. By	y default, DI1	
	controls forward rotation and	DI2 controls	reverse rota	tion.			
	2. Communication control. It is controlled by Modbus RTU (RS485).						
	3.Reserved						
F0-01	Main Frequency Source		1	9			
	Selection	0	1	9	-	*	
	0: function code setting, pow	er-off memo	ry				
	1: panel potentiometer						
	2: Al1 3: Al2 (reserved)						
	4: Multi-segment command	5: PLC					
	6: Constant pressure water su	apply 7: Gene	eral PID				
	8: Communication Settings						
	9: Reserved						
F0-02	Auxiliary Frequency Source						
	Selection	0	0	9	-	*	
	Same as F0-01					1	
F0-03	Frequency Source Selection	00	00	34	_	\Rightarrow	
	Bit: frequency source selection						
	0: main frequency source						
	1: primary and secondary operation results (the operation relationship is determined by						
	ten digits)	יבומנוטוו ופטע	iits (the oper	מנוטוו וכומנוטו	isilip is ue	terriffied by	
	,	**************************************		auvilianu fra s		r.o.o	
	2. Switch between the main f	requency sol	urce and the a	auxillary frequ	uency sou	rce	

	3. Switch between main frequency sour Ten digits: the main and auxil 0: Primary + Secondary 1: Primary - secondary 2: The maximum value of bot	rce and the iary operatic	main and aux	iliary operati	on results	sults.
F0-04	3: The minimum value of both Acceleration Time	h 0	Depends on model	500.0	second	☆
	The acceleration time require frequency (F0-09).	ed for the in	1	lerate from (O Hz to the	upper limit
F0-05	Deceleration Time	0	Depends on model	500.0	second	☆
	The deceleration time requered frequency (F0-09) to 0 Hz.	ired for the	e inverter to	decelerate	from the	upper limit
F0-06	Control Terminal DC Output Selection	0	1	2	-	*
	0: 5V Output 5V DC volume 1: 10V Output voltage 2: 24V Output DC 24V	of 10V DC				
F0-07	Analog Input and Output Signal Format	0000	0000	5555	-	*
	0: 0-10V 1: 0-20mA 2: Bit: Al1; Ten bits: Al2; Hundre		: 20-4mA 4: Thousands:		10-0V	
F0-08	O: Ramp to stop. After the shu output frequency according to 0. 1: Coast to stop. After the shu the output, and the motor stop.	o the decele utdown comi	ration time ar mand is effect	nd stops after live, the inver	the freque	ency drops
F0-09	Frequency Upper limit Inverter maximum output fre	F0-10	50.0	599.9	Hz	☆
F0-10	Frequency Lower limit Inverter minimum output free	0.0	0.0	F0-09	Hz	☆
F0-11	Torque Boost	0	Depends on model	30.0	%	☆
	Under the V/F control mode, the output torque of the motor is relatively low in la frequency operation, which can increase the value of this parameter; However, to boost setting is too large, the motor is easy to overheat, and the inverter is easy overcurrent. When the load is heavy and the starting torque of the motor is insufficient, it is recommended to increase this parameter. When the load is light, the torque can reduced.					
F0-12	Torque Boost Cut-off Frequency	0.0	50.0	F8-03	Hz	*

	Below this frequency, the torque boost fails.	que boost is	effective, and	beyond this	set freque	ncy, the
F0-13	Switching Frequency	1.0	Depends on model	16.0	kHz	☆
	This function adjusts the swit frequency is low, the higher h motor loss increases, and the high, the motor loss decrease changed.	armonic cor motor temp	nponent of th perature rises.	e output curi When the sv	rent increa witching fre	ses, the equency is
	The loss of inverter increases, interference increases.	, the temper	ature rise of ir	nverter incre	ases, and t	he
F0-14	Output Phase Sequence	0	0	1	-	$\stackrel{\wedge}{\bowtie}$
	0: UVW	1: U W	V	,		
	Changing this parameter can wiring. Note: after the parameter is i so be careful on some occasion.	nitialized, th	e parameter v	vill return to	the defaul	t value of 0,
F0-15	Speed Tracking Start	0	0	1	-	\Rightarrow
	0: Disable	1: Enabl	II.	_		
	When the inverter starts, the it from the current motor spe	re is a short		detect the m	otor speed	l and control
F0-16	Preset Frequency	F0-10	F8-03	F0-09	Hz	\Rightarrow
	When the target frequency se sets the initial value for the ta After the target frequency is i invalid temporarily, unless thi	orget frequer modified by	ncy of the inve the "Up/Dowr	erter. n" key, this pa		vill become
F0-17	Low Frequency Action	0	0	2	-	\Rightarrow
	0: Running at lower limit fre1: Stop2: Zero-speed runningWhen the set frequency is be inverter can be selected by the	low the lowe	-	ncy, the runr	ning state c	of the
F0-18	Command Source & Frequency Source Binding	000	000	999	-	☆
	Bit: operation panel comman 0: no binding 1: The up and down keys on tand the power-off memory) 2: Panel potentiometer 3: AII 4: AI2 5: Multi-speed 6: PLC 7: Constant pressure water su 8: General PID	he panel are			OWN can b	e modified,

	9: Communication Settings							
	Ten bits: terminal command binding frequency source selection							
	Hundred bits: communication command binding frequency source selection							
	Define the binding combination between three running command channels and nine							
	channels with given frequenc		_					
F0-19	JOG/REV Key Function							
101)	Selection	0	0	4	-	*		
	0: JOG/REV invalid			•				
	1: The command channel of	f the operation	on panel is sw	ritched with t	he remote c	ommand		
	channel (terminal command	-	-					
	2: Forward/reverse switching				,			
	3: Forward jogging	-6						
	4: Reverse jogging							
	The JOG/REV key is a multi	i-function ke	v which can	he switched a	luring stan	and		
	operation. (only available on		•		- 1			
	"Increase " key and "Decrease				-			
F0-20	STOP Key Function	0	1	1	-	$\stackrel{\wedge}{\simeq}$		
	0: Only in keyboard operation	mode, the s	top function	of it is effect	ive.			
	1: Under any operation mode	, the stop fu	nction of it is	effective.				
F0-21	Jog Running Frequency	0.0	2.0	F0-09	Hz	$\stackrel{\wedge}{\Rightarrow}$		
F0-22	Jog Acceleration Time	0.0	20.0	6500.0	second	\Rightarrow		
F0-23	Jog Deceleration Time	0.0	20.0	6500.0	second	\Rightarrow		
	F0-21-F0-23 defines the given	frequency a	nd accelerati	on and decel	eration tim	e of the		
	inverter when jogging.							
F0-24	Reset to Factory Parameters	0	0	65535	-	*		
	1: Reset the factory settings.							
F0-25	Select the Display Menu							
	Type.	1	1	3	-	*		
	1: Default menu							
	2: Only the parameters changed by the user are displayed.							
	3: Reserved							
F0-26	Water pump running mode	0	1	19	-	*		
	0: Manual mode		I					
	1: One for use, one for standb	y (single pur	mp)					
	2: 2 inverters network master		• •					
	3: 3 inverters network master	•						
	4: 4 inverters network master	4: 4 inverters network master						
	5: 5 inverters network master							
	6: Reserved							
	7: Two pumps auto alternate))						
	8: Reserved							
	9: Reserved							
	11: Slave 1 in the network set	ting (Standb	y master)					
	12: Slave 2 in the network							
	13: Slave 3 in the network							

- 14: Slave 4 in the network
- 15: Reserved
- 16: Reserved
- 17: One for inverter, one for grid power (Fix pump 1 for inverter, pump 2 for grid power, do not alternate)
- 18: One for inverter, two for grid power (Fix pump 1 for inverter, pump 2, pump 3 for grid power, do not alternate)
- 19: One for inverter, three for grid power (Fix pump 1 for inverter, pump 2, pump 3, pump 4 for grid power, do not alternate)

5.2.2 F1 Parameter Group – Terminal IO Function Selection

Parameter	Description	Minimum	Default	Maximum	Unit	Change	
raiailletei	Description	Value	Value	Value	Oiiit	Permission	
F1-00	DI1 Terminal Function	0	1	35	_	*	
	Selection		1	33		^	
	0: No function						
	1: Forward running FWD						
	2: Reverse running REV						
	3: Three-wire mode running control						
	4: Two-wire/three-wire switching						
	5: Forward jog						
	6: Reverse jog						
	7: Fault reset						
	8: Multi-segment comman	d terminal 1					
	9: Multi-segment comman	d terminal 2					
	10: Multi-segment command	terminal 3					
	11: External stop terminal, w	hich is only va	lid for panel	control.			
	12: Coast stop, that is, blocki	ng PWM outp	ut.				
	13: External terminal shutdo	wn (decelerat	ion time 2, wl	hich is valid a	t any time)	
	14: Emergency stop						
	15: DC braking						
	16: Deceleration DC braking						
	17: External fault input (norn	nally open)					
	18: External fault normally cl	•					
	19: Running Command switc	h terminal 1					
	F0-00=1 or 2 is effective.						
	When F0-00=1, this terminal	•		-	•	_	
	When F0-00=2, this terminal	can perform of	communication	on and keybo	ard key sw	itching.	
	20: Command source switchi	_					
	Used for switching between	external termi	inal control ar	nd communic	ation com	mand	
	control; If the current state is				this termin	al is valid,	
	switch to communication command control and vice versa.						
	21: Terminal UP						
	22: Terminal DOWN						
	23: UP/DOWN setting is clear	red.					

	24. 5	:							
	24: Frequency source switch	_	1.1						
	25: Switch between the main	• •		-	•				
	26: Switch between auxiliary		•	set frequency	•				
	27: Effective terminal for fre		-						
	28: Acceleration and deceler	•							
	29: Acceleration and deceler	ration time sel	ection termin	al 1					
	30: PLC status reset								
	31: Speed control/torque co	ntrol switching	3						
	32: Empty-water								
	33: Full-water								
	34: Secondary target pressur	re setting							
	35: Running pause								
F1-01	DI2 Terminal Function	0	2	35		*			
	Selection		2	33	_	^			
	Same as DI1.								
F1-02	DI3 Terminal Function	0	0	25					
	Selection	0	8	35	_	*			
	Same as DI1.		•	•	•	•			
F1-03	DI4 Terminal Function	_		25					
	Selection	0	9	35	-	*			
	Same as DI1.								
F1-04	DI5 Terminal Function		1.0						
	Selection	0	10	35	-	*			
	Same as DI1.								
F1-05	DI5-DI1 Terminal Effective								
	Mode Selection	00000	00000	11111	-	*			
	0: The high level is active.								
	1: The low level is active.								
	Each of the five digits can on	nly choose 0 or	1, which res	pectively corr	espond to	the valid			
	modes of DI1~5. They are:								
	Bit: DI1; Ten: DI2; Hundreds:	DI3; Thousan	ds: DI4; Ten tl	housand bits:	DI5				
F1-06	Terminal Command Mode	0	0	3	-	*			
	0 : Two-wire mode 1	1: Two-wire	mode 2		1	ı			
	2: Three-wire mode 1	3: Three-wir	e mode 2						
F1-07	DO Output Terminal	2225				٨			
	Effective State Selection	0000	0000	1111	-	\Rightarrow			
	0: Positive logic	1	1	ı	ı.	ı			
	1. Negative logic								
	Bit: Relay 1								
	Ten bits: Relay 2								
	Hundreds: DO1								
	Thousand: DO2								
	Define the output logic of th	e output term	inal.						
F1-08	Relay 1 Output Function			_					
	Selection	0	1	27	-	\Rightarrow			
	<u> </u>	1	L	1	L	I			

The output terminal of each relay can provide 27 kinds of functions, these functions are:

- 0: No function.
- **1. The inverter is running.** The inverter is in the running state, and when there is an output frequency (which can be zero), it outputs the ON signal.
- **2: Inverter fault.** When the inverter fails and stops, it outputs the ON signal.
- **3: Ready for running.** When the power supply of the main circuit and control circuit of the inverter is stable, and the inverter does not detect any fault information, and the inverter is in an operational state, the ON signal is output.
- **4:** The upper limit frequency arrives. When the operating frequency reaches the upper limit frequency, the ON signal is output.
- **5: The lower limit frequency arrives.** When the operating frequency reaches the lower limit frequency, the ON signal is output. This signal is OFF in the stop state.
- **6: Torque limit.** In the speed control mode of the inverter, when the output torque reaches the torque limit, the inverter is in the stall protection state and outputs the ON signal at the same time.
- **7. Communication control.** The relay output is controlled by Modbus RTU (RS485).
- 8: Motor overload pre-alarm. Output ON signal before motor overload protection action.
- **9: Inverter overload pre-alarm.** Output the ON signal 10s before the overload protection of the inverter occurs.
- **10: Timed time exceeded.** When the running time of the inverter reaches the set timing time (F6-05), it outputs the ON signal.
- **11: The frequency reaches 1.** When the operating frequency of the inverter reaches the set value of F1-12, it outputs the ON signal.
- **12: The frequency reaches 2.** When the operating frequency of the inverter reaches the set value of F1-14, it outputs the ON signal.
- **13: The current reaches 1.** When the running current of the inverter reaches the set value of F1-16, it outputs the ON signal.
- **14: The current reaches 2.** When the running current of the inverter reaches the set value of F1-18, the ON signal is output.
- 15: Al1 input exceeds the upper or lower limits.
- 16~19: Reserved
- **20:** Pump 1 runs in inverter mode. Water supply mode judges pump 1 runs in inverter mode, output ON signal
- **21: Pump 1 runs in grid power mode.** Water supply mode judges pump 1 runs in grid power mode, output ON signal
- **22: Pump 2 runs in inverter mode.** Water supply mode judges pump 2 runs in inverter mode, output ON signal
- **23: Pump 2 runs in grid power mode.** Water supply mode judges pump 2 runs in grid power mode, output ON signal
- **24: Pump 3 runs in inverter mode.** Water supply mode judges pump 3 runs in inverter mode, output ON signal
- **25: Pump 3 runs in grid power mode.** Water supply mode judges pump 3 runs in grid power mode, output ON signal
- **26: Pump 4 runs in inverter mode.** Water supply mode judges pump 4 runs in inverter mode, output ON signal

	27: Pump 4 runs in grid pow power mode, output ON sign		er supply mo	de judges pu	mp 4 runs	in grid			
F1-09	Relay 2 Output Function Selection	0	2	27	-	☆			
	Same as F1-08								
F1-10	DO1 Collector Output Function Selection	0	1	27	-	☆			
	Same as F1-08								
F1-11	DO2 Collector Output	_	_						
	Function Selection	0	2	27	-	\Rightarrow			
	Same as F1-08								
F1-12	Relay Output Reaches								
	Frequency Setting Value 1	0.0	50.0	F0-09	Hz	\Rightarrow			
	, ,	Set value of frequency when relay output function is set to 11. Set the ratio based on the							
	rated value.								
F1-13	Relay Output Reaches								
	Frequency Bandwidth 1	0.0	0.0	100.0	%	\Rightarrow			
	When the output frequency	of the inverte	r is within the	positive and	negative o	detection			
	width of any set arrival frequ			-					
F1-14	Relay Output Reaches								
	Frequency Setting Value 2	0	100	F0-09	Hz	\Rightarrow			
	Set value of frequency when relay output function is set to 12. Set the ratio based on the								
	rated value.	,							
F1-15	Relay Output Reaches								
	Frequency Bandwidth 2	0.0	0.0	100.0	%	☆			
	When the output frequency of the inverter is within the positive and negative detection								
	width of any set arrival frequ			·	J				
F1-16	The Relay Output Reaches					A			
	Current Set Value 1	0.0	100.0	300.0	%	☆			
	Set value of frequency or cur	rent when rel	ay output fun	ction is set to	o 13. Set th	ne ratio			
	based on the rated value.								
F1-17	Relay Output Reaches	2.2		200.0		٨			
	Current Bandwidth 2	0.0	0.0	300.0	%	☆			
	When the output current of	the inverter is	within the se	t positive an	d negative	detection			
	width of any arrival current,	width of any arrival current, the relay 1 outputs ON signal.							
F1-18	The Relay Output Reaches	-				٨			
	Current Set Value 2	0.0	100.0	300.0	%	☆			
	Set value of frequency or cur	rent when rel	ay output fun	ction is set to	o 14. Set th	ne ratio			
	based on the rated value.								
F1-19	Relay Output Reaches			222		A			
	Frequency Bandwidth 2	0.0	0.0	300.0	%	☆			
	When the output current of	the inverter is	within the se	t positive an	d negative	detection			
	width of any arrival current,			•	0 - 0				
F1-20	Relay 1 Output Delay Time	0.0	0.0	3600.0	second	☆			
	,								

	Delay time of relay 1 from sta	ate change to	actual output	change.					
F 1-21	Relay 2 Output Delay Time	0.0	0.0	3600.0	second	☆			
	Delay time of relay 2 from sta	ate change to	actual output	change.					
F 1-22	DO1 Output Delay Time	0.0	0.0	3600.0	second	☆			
	The delay time from the state	e change of th	e collector DO	D1 to the act	ual output	change			
F 1-23	DO2 Output Delay Time	0.0	0.0	3600.0	second	☆			
	The delay time from the state	e change of th	e collector DO	D2 to the act	ual output	change			
F 1-24	Al 1 Gain	0	1.00	20.00	-	*			
	Analog input Al1 signal gain r	multiple, maxi	mum gain up	to 20 times.	For examp	le, AI1 is			
	used as the target frequency	setting, F0-07	' is set to "0:0	-10V", and th	nis parame	ter is set to			
	2.00; Then a 5V input signal of	can make the	Inverter run a	t the maxim	ım frequei	ncy.			
F1-25	AI 1 Offset	-10.00	0.00	10.00	V	*			
	Analog input 1 signal offset v	alue, the max	imum offset o	an be +/-10\	/. For exam	ple, AI1 is			
	set as the target frequency, F	0-07 is set to	"0:0-10V", an	d this param	eter is set	to 2.0; The			
	the 8V input signal can make	the inverter r	un at the max	kimum frequ	ency. Whe	n F0-07 is			
	set to "1:0-20mA", 10.0V of t	set to "1:0-20mA", 10.0V of this parameter indicates an offset of 20mA, and other values							
	also correspond linearly. When F0-07 is set to "2:4-20mA", 10.0V of this parameter								
	indicates the offset of 16mA, and the other values also correspond linearly.								
	Internal calculated value of A	l1 = actual inp	out *F1-24+F1	25	1	ı			
F1-26	Al 2 Gain	0	1.00	20.00	-	*			
	Analog input 2 signal gain mu	ultiple, maxim	um gain up to	20 times.	,				
71-27	AI 2 Offset	-10.0	0	10.0	V	*			
	Analog input 2 signal offset v	alue, maximu	m offset +/-10	OV.					
71-28	AO1 Output Function	0	0	6	_	☆			
	Selection	U	U	0					
	0: Running frequency.								
	0: Running frequency.								
	0: Running frequency. 1: (Target) Set frequency.								
		output signal	corresponds t	o 2 times the	e rated cur	rent.			
	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of	output signal c	-						
	1: (Target) Set frequency. 2: Output current. 100% AO of the second seco	output signal of f torque.	orresponds to	2 times the	rated torq	ue. This			
	1: (Target) Set frequency. 2: Output current. 100% AO of the second seco	output signal of f torque. utput signal co	corresponds to	2 times the 2 times the	rated torq	ue. This er.			
	1: (Target) Set frequency. 2: Output current. 100% AO of the second seco	output signal of f torque. utput signal co output signal o	corresponds to corresponds to corresponds to	2 times the 2 times the o 1.2 times t	rated torq rated power	ue. This er. oltage.			
	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. The set of the set	output signal of f torque. utput signal co output signal o	corresponds to corresponds to corresponds to	2 times the 2 times the o 1.2 times t	rated torq rated power	ue. This er. oltage.			
F1-29	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. TI AO 2 Output Function	output signal of f torque. utput signal co output signal o	corresponds to corresponds to corresponds to	2 times the 2 times the o 1.2 times t	rated torq rated power	ue. This er. oltage.			
7 1-29	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. TI AO 2 Output Function Selection	output signal of f torque. utput signal co output signal on he AO output	corresponds to corresponds to corresponds to signal is contr	2 times the 2 times the o 1.2 times t	rated torq rated power	er. oltage. RS485).			
	1: (Target) Set frequency. 2: Output current. 100% AO of the second seco	output signal of f torque. utput signal co output signal o he AO output	corresponds to corresponds to signal is contract	2 times the 2 times the o 1.2 times t colled by Mod	rated torq rated power	er. oltage. RS485).			
	1: (Target) Set frequency. 2: Output current. 100% AO of the second seco	output signal of f torque. utput signal co output signal he AO output 0	orresponds to corresponds to signal is contract.	2 times the 2 times the o 1.2 times t colled by Mod 6	rated torq rated power	er. oltage. RS485).			
F1-30	1: (Target) Set frequency. 2: Output current. 100% AO of the second seco	torque. Interpretation of torque. Interpretation of torque output signal of the AO output O O O nultiple, maxin	orresponds to corresponds to signal is contract and a signal is contract.	2 times the 2 times the o 1.2 times t colled by Mod 6 20.00 to 20 times.	rated torq rated powe he rated vo dbus RTU (er. pltage. RS485).			
F1-30	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. TI AO 2 Output Function Selection Same as AO1 AO 1 Gain Analog output 1 signal gain in AO 1 Offset	output signal of torque. utput signal coutput signal of the AO output 0 0 nultiple, maxin -10.00	orresponds to corresponds to corresponds to signal is contract and the con	2 times the 2 times the o 1.2 times t colled by Mod 6 20.00 to 20 times. 10.00	rated torq rated power	er. oltage. RS485).			
F1-30 F1-31	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. TI AO 2 Output Function Selection Same as AO1 AO 1 Gain Analog output 1 signal gain in AO 1 Offset Analog output 1 signal bias v	torque. Itorque. Itorque signal continut signal signa	orresponds to corresponds to corresponds to signal is contraction of the contraction of the corresponds to signal is contracted by	2 times the 2 times the o 1.2 times t colled by Mod 6 20.00 to 20 times. 10.00 to be +/-10V.	rated torq rated powe he rated vo dbus RTU (er. pltage. RS485).			
F1-29 F1-30 F1-31	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. The AO 2 Output Function Selection Same as AO1 AO 1 Gain Analog output 1 signal gain in AO 1 Offset Analog output 1 signal bias version AO 2 Gain	output signal of torque. utput signal coutput signal of the AO output o	corresponds to corresponds to corresponds to signal is control 1 1.00 mum gain up 0.00 imum bias car 1.00	2 times the 2 times the o 1.2 times t colled by Mod 6 20.00 to 20 times. 10.00 n be +/-10V. 20.00	rated torq rated powe he rated vo dbus RTU (er. pltage. RS485).			
F1-30 F1-31	1: (Target) Set frequency. 2: Output current. 100% AO of 3: Output torque. 100% AO of value is the absolute value of 4: Output power. 100% AO of 5: Output voltage. 100% AO of 6. Communication control. TI AO 2 Output Function Selection Same as AO1 AO 1 Gain Analog output 1 signal gain in AO 1 Offset Analog output 1 signal bias v	output signal of torque. utput signal coutput signal of the AO output o	corresponds to corresponds to corresponds to signal is control 1 1.00 mum gain up 0.00 imum bias car 1.00	2 times the 2 times the o 1.2 times t colled by Mod 6 20.00 to 20 times. 10.00 n be +/-10V. 20.00	rated torq rated powe he rated vo dbus RTU (er. pltage. RS485).			

F1-34	DI delay time	0.000	0.010	1.000	S	\Rightarrow

5.2.3 F2 Parameter Group - VF Curve

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission
F2-00	VF curve setting	0	0	2	-	*
	0: straight line v/f. 1: multipoint v/f. 2: square v/f. Note: F2-00 ~F2-10 is only valid	l when F8-06	selects "V/F	- Control"		
F2-01	Multi-point VF Frequency Point 1	0.0	0.0	F2-03	Hz	*
F2-02	Multi-point VF Voltage Point 1	0	0	100.0	%	*
F2-03	Multi-point VF Frequency Point 2	F2-01	0	F2-05	Hz	*
F2-04	Multi-point VF Voltage Point 2	0	0	100.0	%	*
F2-05	Multi-point VF Frequency Point 3	F2-03	0	F2-07	Hz	*
F2-06	Multi-point VF Voltage Point 3	0	0	100.0	%	*
F2-07	Multi-point VF Frequency Point 4	F2-05	0	F2-09	Hz	*
F2-08	Multi-point VF Voltage Point 4	0	0	100.0	%	*
F2-09	Multi-point VF Frequency Point 5	F2-07	0	F0-09	Hz	*
F2-10	Multi-point VF Voltage Point 5	0	0.0	100.0	%	*
	Voltage relationship: the voltage reasonably according to the load Frequency relationship: the must four-segment frequency > three one-segment frequency. Multi-point VF should be set according to the low-frequency voltage and the inverter may be over-re-	nd characterish of the condition of the conding to the conding to the condition of the cond	stics. curve of five equency > to see load chara nigh, the mo	e-segment fre wo-segment f acteristics of f tor may over	equency > frequency the motor	>
F2-11	VF Over-current Stall Action Current	50	150	200	%	*
F2-12	VF Over-current Stall Enable	0	1	1	-	*
	0: Disable 1: Enable					
F2-13	VF Over-current Stall Inhibition Gain	0	20	100	-	☆
F2-14	VF Multiple Over-current Stall Action Current Compensation	50	50	200	-	*

	under the same stall current, me characteristics of the motor, can some centrifuge such as running and load the occasion of mome acceleration.	n reduce the g frequency	rated freque	ency above st ed several tir	tall current	action, in eakening		
F2-15	VF Overexcitation Gain	0	64	200	-	☆		
	In the process of inverter deceleration, over magnetizing control can restrain the rise of bus voltage and avoid overvoltage fault. The greater the over magnetizing gain, the stronger the inhibition effect. When the inverter is prone to overvoltage alarm during deceleration, it is necessary to increase the over magnetizing gain. However, the over magnetizing gain is too large, which easily leads to the increase of output current, so it needs to be weighed in application. When the inertia is small, there will be no voltage rise during motor deceleration, so it is recommended to set the over magnetizing gain to 0. To places that have requirements of							
	braking resistor, also suggested that over magnetizing gain is set to 0.							
F2-16	VF Overvoltage Stall Action Voltage	200.0	Depend on model	2000.0	V	*		
	VF overvoltage stall running voltage.							
F2-17	VF Overvoltage Stall Enable	0	1	1	-	*		
	0: Disable 1: Enable							
F2-18	VF Overvoltage Stall Inhibition Frequency Gain	0	30	100	-	☆		
	Increasing F2-18 will improve the control effect of DC bus voltage, but the output frequency will fluctuate. If the output frequency fluctuates greatly, F2-18 can be appropriately reduced.							
F2-19	VF Overvoltage Stall Inhibition Voltage Gain	0	30	100	-	☆		
	Increasing F2-19 can reduce the	e overshoot o	of DC bus vo	ltage.	1			
F2-20	Maximum Rising Limiting Frequency of Overpressure Stall	0	5	50	Hz	*		
	Limit of maximum rising frequency of overvoltage inhibition.							

5.2.4 F3 Parameter Group – Start/Stop Process Control

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission		
F3-00	Start Frequency	0.0	0.0	10.0	Hz	☆		
	To ensure the motor torque at start, please set the appropriate start frequency.							
F3-01	Start Frequency Hold Time	0.0	0.0	100.0	second	*		
	In order to fully establish the the start frequency for a certa	· ·	ux when the	motor starts	, it is neces	sary to keep		
F3-02	Start DC Braking Current	0	0	100	%	*		
	The greater the DC braking	current, the	greater the	braking for	ce. When s	et to 0, the		

	inverter will still perform the	braking proc	ess for F3-03						
	Set the time, but there is no	•			neter value	corresponds			
	to the rated current percentage	_		or para					
F3-03	Start DC Braking Time	0.0	0.0	100.0	second	*			
10 00	Duration of starting DC braking		0.0	100.0	Second				
F3-04	DC Braking Initial Frequency	.8.							
1001	at Stop	0.0	0.0	F0-09	Hz	☆			
	In the process of deceleration and stop, when the running frequency decreases to this frequency, the DC braking process begins.								
F3-05	DC Braking Waiting Time at	,cc33 bcgiii3.							
15-05		0.0	0.0	100.0	second	\Rightarrow			
	Stop After the rupping frequency is reduced to the starting frequency of stapping DC braking								
	After the running frequency is reduced to the starting frequency of stopping DC braking,								
	the inverter stops outputting for a period of time before starting DC.								
	Braking process. It is used to prevent overcurrent and other faults that may be caused when DC braking is started at a higher speed.								
F3-06	DC Braking Current at Stop	0	0	100	%	☆			
r3-00			_			W			
	There are two situations of DC braking current relative to the basic value.								
	1. When the rated current of the motor is less than or equal to 80% of the rated current of								
	the inverter, it is the base value of the percentage relative to the rated current of the motor.								
	motor. 2. When the rated current of the motor is greater than 80% of the rated current of the								
	inverter, it is percentage relat					1			
F3-07	DC Braking Time	0.0	0.0	100.0	second	\Rightarrow			
	The duration of DC braking. When this value is 0, the DC braking process is cancelled.								
	_	/hen this val	ue is 0, the D	C braking pro	ocess is can	celled.			
F3-08	The duration of DC braking. W Acceleration and				ocess is can				
F3-08	Acceleration and Deceleration Mode	0	0	1	-	*			
F3-08	Acceleration and	0	0	1	-	*			
F3-08	Acceleration and Deceleration Mode	0	0	1	-	*			
F3-08	Acceleration and Deceleration Mode 0: linear acceleration and dec	0 eleration. Th	0 ne output fred	1 quency increa	- ases or deci	reases in a			
F3-08	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	0 eleration. Theceleration. V	0 ne output fred When the tar	1 quency increa	- ases or deci	reases in a			
F3-08	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	0 eleration. The eceleration. Vases accordin	0 ne output fred When the tar ng to the S cu	1 quency increa get frequenc rve.	ases or decr	reases in a			
	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	0 eleration. Theceleration. V	0 ne output fred When the tar	1 quency increa	- ases or deci	reases in a			
	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	0 eleration. Theceleration. Nases according	0 When the target of the S cu 30.0	1 quency increases get frequency rve.	- ases or decr y is fixed, th %	reases in a			
	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	0 eleration. The eceleration. Vases according 0.0 beginning o	0 When the targing to the S cu 30.0 f curve accele	1 quency increa get frequenc rve. 100.0 eration and d	- ases or decr y is fixed, th % leceleration	reases in a se output			
	Acceleration and Deceleration Mode 0: linear acceleration and decentration and decentratio	0 eleration. The eceleration. Vases according 0.0 beginning o	0 When the targing to the S cu 30.0 f curve accele	1 quency increa get frequenc rve. 100.0 eration and d	- ases or decr y is fixed, th % leceleration	reases in a se output			
	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	eleration. The eceleration. Vases according 0.0 beginning of quency changes.	0 When the targing to the S cu 30.0 f curve accelerge gradually	1 quency increases It s	- y is fixed, th % leceleration should satis	reases in a ne output t , during fy with			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	0 eleration. The eceleration. Vases according 0.0 beginning o	0 When the targing to the S cu 30.0 f curve accele	1 quency increa get frequenc rve. 100.0 eration and d	- ases or decr y is fixed, th % leceleration	reases in a ne output t during			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	eleration. The eceleration. Name of the eceleration	0 When the target of the S curve acceled gradually 30.0	1 quency increases It s	- ases or decr y is fixed, th % deceleration should satis	reases in a ne output t , during fy with			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and decestraight line. 1: S curve acceleration and decestration a	eleration. The eceleration. Vases according 0.0 beginning of quency changes of the end o	0 When the targing to the S cu 30.0 f curve accelerge gradually 30.0 he acceleration	1 quency increa get frequence rve. 100.0 eration and deincreases. It seems to be a seem to be a	- ases or decreation should satis % eration of t	reases in a ne output t , during fy with the S-curve,			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and deceleratio	eleration. The eceleration. Veceleration. Ve	0 When the targing to the S cu 30.0 f curve accelerge gradually 30.0 he acceleration	1 quency increases It seeds the seeds and decels and de	- ases or decrey is fixed, the should satisses when the same in th	reases in a the output the output the output the s-curve, time			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and decentration and decentratio	eleration. The eceleration. Veceleration. Ve	0 When the targing to the S cu 30.0 f curve accelerge gradually 30.0 he acceleration	1 quency increases It seeds the seeds and decels and de	- ases or decrey is fixed, the should satisses when the same in th	reases in a the output the output the output the s-curve, time			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and the store according to th	eleration. The eceleration. Veceleration. Ve	0 When the targing to the S cu 30.0 f curve accelerate gradually 30.0 he accelerate uency change inverter output	1 quency increa get frequence rve. 100.0 eration and descreases. It seed the decreases gut frequency	- ases or decreases or decrease	reases in a the output the output the output the securve, time the or			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and decentration and decentratio	eleration. The eceleration. Veceleration. Ve	O The output free When the target of the S curve accelerate gradually 30.0 The accelerate uency change inverter output Depends	1 quency increases It seeds the seeds and decels and de	- ases or decrey is fixed, the should satisses when the same in th	reases in a the output the output the output the s-curve, time			
F3-09	Acceleration and Deceleration Mode 0: linear acceleration and deceleration and the store according to th	eleration. The eceleration. Veceleration. Ve	0 When the targing to the S cu 30.0 f curve accelerate gradually 30.0 he accelerate uency change inverter output	1 quency increa get frequence rve. 100.0 eration and descreases. It seed the decreases gut frequency	- ases or decreases or decrease	reases in a the output the output the output the securve, time the or			

F3-13	Accoloration 9 Decoloration								
F3-13	Acceleration & Deceleration	0.0	0.0	F0-09	Hz	$\stackrel{\sim}{\sim}$			
	Time 1-2 Switching	0.0	0.0	FU-U9	ПΖ	\mathcal{W}			
	It is used to select different acceleration and deceleration time according to the running								
	It is used to select different acceleration and deceleration time according to the running frequency range, not through DI terminal.								
F3-14		1	I	FO 00	11-				
F3-14	Skip Frequency 0.0 0.0 F0-09 Hz								
			• •			_			
	frequency of the inverter will		_	•	-				
	outside the range. It can be u		•	•	•				
	equipment. This parameter is	the reference	te value of sk	ip irequency,	and the rai	ige is set by			
F2 4#	F3-15.	0.0	0.0	50.00		٨			
F3-15	Skip Frequency Bandwidth	0.0	0.0	F0-09	Hz	☆			
	Used in combination with F3-	•		, .		,			
	F3-15). After this range is ena								
	hysteresis curve: when the from	. ,			.				
	remains at the low frequency	• •				igh to			
	within the range, the frequen	cy remains a	it the high fre	equency bour	ndary;				
F3-16	Forward/Reverse Dead	0.0	0.0	3000.0	second	$\stackrel{\wedge}{\sim}$			
	Time	_							
	Set the transition time at the output of OHz during the forward and reverse transitions of								
	the inverter.	T		I					
F3-17	Reverse Control	Inversion	Inversion	Inversion	Inversion	Inversion			
		control	control	control	control	control			
	0: Reverse is allowed.	I	Reverse is p						
F3-18	Brake Unit Duty	0	50	100	%	\Rightarrow			
	It is used to adjust the duty co								
	the braking unit has a high du		_	•		_			
	of the inverter fluctuates grea	atly in the br	aking process	. When set to	o 0, brake u	nit is not			
	enabled.	Т	Г	T	Г				
F3-19	Brake Unit Action Voltage	200.0	Depends	1000.0	V	$\stackrel{\wedge}{\Rightarrow}$			
	Drawe Cimer totton TottaBe		on model						
	Built-in starting voltage of bra	aking unit act	tion, after the	bus voltage	is higher th	an this			
	voltage, the braking unit will	start to act.	l	I	l				
F3-20	Speed Tracking Mode	0	1	2	-	*			
	0: Start with the shutdown from	equency. Tra	cking down fi	rom the frequ	iency when	the power			
	is off.								
	1: Start from the preset frequ	ency. Track ι	ipward from	the preset fro	equency and	d use it			
	when the power is cut off for	a long time	and then rest	arted.					
	2: Start with the maximum from	equency. Tra	cking down fi	rom the maxi	mum frequ	ency,			
	generally used by generating	loads.							
F3-21	Speed Tracking	1	50	100	-	☆			
	When speed tracking starts, s	et the speed	l of speed tra	cking. The la	ger the par	ameter is,			
	the faster the tracking speed	is. However,	if the parame	eter is too lar	ge, the trac	king effect			
	may be unreliable.								
F3-22	Speed Tracking Current	0	Depends	1000	-	☆			
				i					

	Loop Кр		on model					
	F3-22-F3-26 parameters need	not be set k	y users.		,			
F3-23	Speed Tracking Current Loop ki	0	Depends on model	1000	-	$\stackrel{\sim}{\sim}$		
F3-24	Speed Tracking Current Value	5	Depends on model	200	%	$\stackrel{\wedge}{\sim}$		
F3-25	Speed Tracking Current Lower Limit	5	30	100	%	*		
F3-26	Speed Tracking Voltage Rising Time	0.5	1.1	3.0	second	*		
F3-27	Demagnetizing Time	0.00	1.00	5.00	second	*		
	The demagnetizing time is th	The demagnetizing time is the minimum interval between stop and start-up, and this						
	function will take effect only	after the spe	ed tracking fu	unction is tur	ned on.			
	If the setting value is too sma	II, it is easy t	o cause overv	oltage fault.				

5.2.5 F4 Parameter Group – Multi-segment Command

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission
F4-00	Multi-segment Command 0	0	0	6	_	☆
	Frequency Source					
	0: Digital setting (F4-01)					
	1: Preset frequency					
	2: Panel potentiometer					
	3: AI1					
	4: AI2					
	5: PID					
	6: Reserved					
F4-01	Multi-segment Command 0	-F0-09	0.0	F0-09	Hz	\Rightarrow
	Frequency	-10-09	0.0	FU-U9	ПΖ	×
F4-02	Multi-segment Command 1	-F0-09	0.0	F0-09	Hz	☆
	Frequency	-10-09	0.0	FU-U9	ПZ	N
F4-03	Multi-segment Command 2	-F0-09	0.0	F0-09	Hz	☆
	Frequency	-10-09	0.0	FU-U9	ПΖ	×
F4-04	Multi-segment Command 3	-F0-09	0.0	F0-09	Hz	\Rightarrow
	Frequency	-10-03	0.0	10-03	112	N
F4-05	Multi-segment Command 4	F0 00	0.0	FO 00	11-	٨
	Frequency	-F0-09	0.0	F0-09	Hz	\Rightarrow
F4-06	Multi-segment Command 5					
	Frequency	-F0-09	0.0	F0-09	Hz	\Rightarrow
F4-07	Multi-segment Command 6					
1'4-V/	Frequency	-F0-09	0.0	F0-09	Hz	☆
F4-08	. ,					
Г4-Uð	Multi-segment Command 7	-F0-09	0.0	F0-09	Hz	\Rightarrow
	Frequency					
	Multi-segment command car	n be used in	three occasion	ons: as treque	ency sourc	e, as voltage

	source of VF separation, and	as setting so	ource of prod	cess PID.					
	In three applications, the dir	nension of r	nulti-segmei	nt command is	relative va	alue, ranging			
	from-100.0% to 100.0%, wh	ich is the p	ercentage o	f relative max	imum freq	uency when			
	used as frequency source; W	/hen used a	s VF separat	ion voltage so	urce, is the	e percentage			
	relative to the rated voltage	of the mo	tor; Since P	ID setting is o	riginally re	lative value,			
	multi-segment command as I	PID setting s	ource does r	not require din	nensional c	onversion.			
F4-09	PLC Running Mode	0	0	2	-	\Rightarrow			
	0: Stop at the end of a single running.								
	1: The final value is maintained at the end of a single running								
	2: Keep circulating								
F4-10	PLC Power Off Memory	00	00	4.4		٨			
	Selection	00	00	11	_	\Rightarrow			
	Bit: power-down memory selection								
	0: Don't remember when pov	wer is off.							
	1: Power-off memory								
	Ten Bit: Stop memory selection								
	0: Don't remember when power is off.								
	1. Power-off memory								
F4-11	PLC Running Time Unit	0	0	1	-	\Rightarrow			
	0: s(second)	1: h(hou	ırs)	1		l			
F4-12	PLC Segment 0 Running								
	Time	0	0	6500.0	s(h)	\Rightarrow			
F4-13	PLC Segment 0								
	Acceleration &	0	0	1	_	\Rightarrow			
	Deceleration time selection								
	0: Acceleration and deceleration time 1								
	1: Acceleration and decelerat	1: Acceleration and deceleration time 2							
F4-14	PLC Segment 1 Running								
	Time	0	0	6500.0	s(h)	\Rightarrow			
F4-15	PLC Segment 1								
	Acceleration &								
	Deceleration Time	0	0	1	-	\Rightarrow			
	Selection								
	Same as F4-13	<u> </u>	1		1	<u> </u>			
F4-16	PLC Segment 2 Running								
	Time	0	0	6500.0	s(h)	\Rightarrow			
F4-17	PLC Segment 2								
	Acceleration &								
	Deceleration Time	0	0	1	-	\Rightarrow			
	Selection								
	Same as F4-13	<u> </u>	1		1	<u> </u>			
F4-18	PLC Segment 3 Running								
	Time	0	0	6500.0	s(h)	\Rightarrow			
	111110	İ	1	1	I	İ			

F4-19	PLC Segment 3 Acceleration & Deceleration Time Selection	0	0	1	-	☆		
	Same as F4-13							
F4-20	PLC Segment 4 Running Time	0	0	6500.0	s(h)	☆		
F4-21	PLC Segment 4 Acceleration & Deceleration Time Selection Same as F4-13	0	0	1	-	☆		
F4-22	PLC segment 5 Running Time	0	0	6500.0	s(h)	☆		
F4-23	PLC segment 5 Acceleration & Deceleration Time Selection	0	0	1	-	☆		
	Same as F4-13							
F4-24	PLC segment 6 Running Time	0	0	6500.0	s(h)	☆		
F4-25	PLC segment 6 Acceleration & Deceleration Time Selection	0	0	1	-	☆		
	Same as F4-13							
F4-26	PLC segment 7 Running Time	0	0	6500.0	s(h)	☆		
F4-27	PLC segment 7 Acceleration & Deceleration Time Selection	0	0	1	-	☆		
	Same as F4-13							

5.2.6 F5 Parameter Group – PID & Constant Pressure Water Supply Parameters

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission	
F5-00	PID Reference Source	0 0		4	-	☆	
	This parameter is used to sel	ect the targe	t quantity giv	en channel d	uring PID c	ontrol.	
	0: F5-01 setting	1: A	11	2:	AI2		
	3: Panel potentiometer 4: Communication						
	No matter which channel, the set target quantity is a relative value, and the set range is						
	0.0%~100.0%.						
F5-01	PID Reference Value (Actual Pressure)	0.1 3.5 1000.0 Bar ☆					
Through the value of this parameter, a given amount of PID control is set.							
F5-02	PID Feedback Source	0	0	4	-	☆	

	0: Al1	1: AI2		2: (Communic	ation				
	3: DC bus voltage	4: Temp	erature							
	This parameter is used to sel	ect the feed!	oack quantity	in PID contro	l. For a giv	en channel,				
	the feedback quantity is rela		-							
F5-03	PID Direction	0	0	1	-	\Rightarrow				
	0: Positive effect. When the feedback signal of PID is less than a given amount, the output									
	frequency of the inverter inc	reases.								
	1: Negative effect. When the	feedback sig	gnal of PID is	less than a giv	en amoun	t, the output				
	frequency of inverter decrea	frequency of inverter decreases.								
	The function of PID control is	s to make the	given quant	ity and the fe	edback qua	antity the				
	same. Through this paramet	er, you can se	et the running	g trend of the	inverter w	hen there is				
	a difference between the giv	en quantity a	and the feedl	oack quantity.						
F5-04	Acceleration PID	0.0	20.0	6500.0						
	Proportional Gain Kp	0.0	20.0	0500.0	_	\Rightarrow				
	The proportional gain of PID	controller de	etermines the	e adjustment s	strength of	the whole				
	PID controller. The greater K	p, the greate	r the adjustm	ent strength.	If the value	e is high,				
	even if the difference between the given and the feedback is small, the transducer can									
	respond quickly, and the output frequency can vary greatly. But too high a value can cause									
	instability.									
F5-05	Acceleration PID Integral	0.01	0.80	10.00	second	\Rightarrow				
	Time Ki									
	The integral time of PID cont			-		•				
	controller. The shorter the in	_	_	-	t intensity.	If this				
	parameter is set too small, the	he system ma	ay shock easi	ly.						
F5-06	Deceleration PID	0.0	200.0	6500.0	_	\Rightarrow				
	Proportional Gain Kp									
	Same as F5-04									
F5-07	Deceleration PID Integral	0.01	0.01	10.00	second	\Rightarrow				
	Time Ki									
77.00	Same as F5-05									
F5-08	Sensor Type	0	0	3	-	\Rightarrow				
		′20mA								
F# 00		5V~4.5V	16.0	25.0		Λ				
F5-09	Sensor Range	0.0	16.0	25.0	Bar	☆				
	The maximum pressure mea	suring range	of the senso	r, the sensor r	nameplate	or dial are				
E# 40	marked.	400	0.0	40.0		Λ .				
F5-10	Sensor Zero Correction	-10.0	0.0	10.0	Bar	<u></u>				
	This parameter is set when t	nere is no pr	essure in the	pipeline and	pressure is	теа раск ру				
DE 11	the inverter.									
F5-11	Sensor Full-scale	-10.0	0.0	10.0	Bar	\Rightarrow				
	Correction This parameter is set when t	ho processes	displayed as	the pressure	Tauga ia ira	onsistent				
	This parameter is set when t	-	· ·	· ·	gauge is inc	onsistent				
DE 12	with the feedback pressure a				11-					
F5-12	Sleep Frequency	0	20.0	F0-09	Hz	<u></u>				
	When the inverter detects the	iat the feedb	аск pressure	reacnes the t	arget value	e, tne				

	frequency will be reduced to	this parame	ter value, and	d the inverter	will sleep a	and stop.			
F5-13	Sleep Delay Time	0.0	0.0	1200.0	second	\Rightarrow			
	During the running of the inverter, when the set frequency is less than f5-12 sleep								
	frequency, after the F5-13 sleep delay time, the inverter enters the sleep state and								
	automatically stops.								
F5-14	Sleep Pressure Offset	0	8	100	%	\Rightarrow			
	Percentage relative to target	pressure.							
F5-15	Frequency Step of Sleep	0.0	2.0	FO 00	11-				
	Deceleration	0.0	3.0	F0-09	Hz	\Rightarrow			
	Effective at constant or critic	al pressure.							
F5-16	Sleep Deceleration Time	60.0	60.0	600.0	sasand				
	Delay	60.0	60.0	600.0	second	\Rightarrow			
	Note: f5-14 ~ f5-16 is effective	ve when the	pressure fluc	tuation is sma	all.				
F5-17	Wake Up Pressure	0	80	100	%	☆			
	Wake up pressure value, relative to feedback pressure; For example, set it to 80%, the								
	feedback pressure is 10 bar,	and the press	sure wake-up	is 8 bar.					
F5-18	Pressure Upper Limit	0	150	300	%	☆			
	The percentage of the target pressure, exceeding this pressure, an overpressure fault err53								
	is reported.								
F5-19	Water Shortage Detection	0.0	0.0	1200.0	second	$\stackrel{\wedge}{\Rightarrow}$			
	Time	0.0	0.0	1200.0	Second	×			
	It takes time from water pun	np water sho	rtage to alarr	n detection. V	When set to	0.0, disable			
	the water shortage protection	n function.							
F5-20	Water Shortage Detection	0	45.0	F0-09	Hz	$\stackrel{\wedge}{\Rightarrow}$			
	Frequency	U	45.0	FU-09	П	×			
	When the frequency reaches the set value, the current is lower than the set value of F5-21								
	or the pressure is lower than	the set value	e of F5-22, Er	r52 water sho	ortage fault	is reported.			
F5-21	Water Shortage Detection	0	0	200	%	\Rightarrow			
	Current	0	0	200	/0	A			
	Percentage of motor rated co	Percentage of motor rated current. When the current is lower than this value, it is							
	reported that err52 is short	reported that err52 is short of water.							
	When set to non 0, the water	shortage fun	ction is enabl	led.					
F5-22	Water Shortage Detection	0	20	100	%	\Rightarrow			
	Pressure		20	100	/0	N			
	Percentage of target pressur	e. When the	pressure is lo	wer than this	, it is repor	ted that			
	err52 is short of water.	T	I	I	1				
F5-23	Water Shortage Restart	1	20	2000	Min	\Rightarrow			
	Time								
	The inverter will restart auto	matically after	er this time.	1	1	I			
F5-24	Water Shortage Auto	0	50	100	%	\Rightarrow			
	Restart Pressure			100	/6	<i>~</i>			
		Percentage of target pressure.							
F5-25	Antifreeze Function	0	0	1	-	\Rightarrow			
	0: Disable	1: enabl	е						
F5-26	Antifreeze Running	2.0	10.0	F0-09	Hz	☆			

	Frequency									
	When F5-25 is set to 1, the a	ntifreeze fun	ction takes e	ffect, and the	inverter ru	ins at this				
	frequency.									
F5-27	Antifreeze Running Time	60.0	60.0	3600.0	second	\Rightarrow				
	The time of single running w	hen the inve	rter is enable	d with anti-fr	eezing fund	ction.				
F5-28	Anti-freezing running	0	20	1440	Min					
	period	0	30	1440	Min	\Rightarrow				
	Running period of inverter w	hen antifree:	ze function is	enabled.						
F5-29	Auto start enable	0	0	1	-	$\stackrel{\wedge}{\sim}$				
	0: Forbidden 1: Enabled									
F5-30	Auto start delay time(only	0	10	120	second	\Rightarrow				
	Water supply mode)									
F5-31	Reserved									
F5-32	Multi-pump network mode	0	0	2	-	$\stackrel{\wedge}{\sim}$				
	0: Multi-pump master and s	lave control								
	When the pressure is not enough, start the slave pump in turn									
	1: Multi-pump synchronous control									
	When the pressure is not enough, slave pump runs at the same frequency									
	2: Multi-pump one for use, one for standby control									
	Only one pump is running at any time, and other pumps are used as stand-by for each of									
F5-33	Standby master running	0	0	2	-	\Rightarrow				
	mode									
	0: Stop									
	1: Constant speed									
	2: Constant pressure(Slave	1 must have s	sensors)	I	<u> </u>					
F5-34	Standby master mode 1	F0-10	F8-03	F0-09	Hz	\Rightarrow				
	running frequency									
F5-35	Alternating pump	0	0	168	h	\Rightarrow				
	switching period									
	0:Will not replace pump									
	201:Only for debugging, it ta	ikes 3 minute	es to replace t	he pump. Afte	er debuggii	ng, you need				
	to set other values.									
	When set this value greater the									
F5-36	Adding pump pressure	0	0.3	2.0	Bar	\Rightarrow				
F5-37	Adding pump frequency	F0-10	49	F0-09	Hz	☆				
F5-38	Under-pressure adding	1.0	2.0	3600.0	S	\Rightarrow				
	pump time									
F5-39	Reducing pump frequency	F0-10	30.0	F0-09	Hz	☆				
F5-40	Over-pressure reducing	1.0	2.0	3600.0	S	$\stackrel{\wedge}{\leadsto}$				
	pump time	2.2	0.0	1000		A				
F5-41	PID feedback loss	0.0	0.0	100.0	-	\Rightarrow				
	detection value				0.4					
DE 43	l — .					Λ				
F5-42 F5-43	Burst pipe pressure	0.0	50	100	% S	☆ ☆				

	Turns off when set to 0.0									
F5-44	Reserved									
F5-45	Maximum number of pumps running at the same time	0	1	5	-	☆				
F5-46	Standby master and slave quantity	0	1	3	-	☆				
F5-47	Secondary target pressure setting	0.1	3.5	1000.0	Bar	☆				
	While supplying water, when the DI terminal function is set to 34, the secondary target pressure is valid									
F5-48	Adding pump switching delay	0.1	0.2	3600.0	S	☆				
F5-49	Grid power and inverter switching delay	0.1	0.5	3600.0	S	☆				

$5.2.7\ F6\ Parameter\ Group-Extend\ Parameter$

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission			
F6-00	Main Menu Display Auto	0	1	1	_	$\stackrel{\wedge}{\Rightarrow}$			
	Switching		_	_					
	0: Switching is prohibited. Wh	-	•						
	other interfaces, it is forbidde		•		•				
	1: Automatic switching. When the display is switched from the frequency interface to other								
	interfaces, it will automatically switch back to the frequency interface after 10 seconds.								
F6-01	Parameter Modification	0	0	1	_	\Rightarrow			
	Attribute								
	0: Allow modification.								
	1. No modification is allowed.								
	When this parameter is set to 1, the inverter is forbidden to modify the parameter, and it								
	must be set to 0 before it can	be changed.							
F6-02	LED2 Display Data								
	Selection(Double Display	0	2	12	-	\Rightarrow			
	Reserved Parameters)								
	0: Running Frequency								
	1: Running Speed								
	2: Output Current								
	3: DC Bus Voltage								
	4: Output Voltage								
	5: Output Power								
	6: PID Feedback								
	7: Power frequency pump cur	rent							
	8: Al1 Voltage								
	9: Motor Temperature Value	<u> </u>							

	10: heatsink temperature									
	11: Actual Switching Freque	ocv.								
	12: Actual Running Speed	ТСУ								
F6-03	User Password	0	0	65535	_	*				
10 05	The inverter provides the use	_			 F6-03 is SF					
	non-zero, it is the user passw									
	•	=	· ·			_				
	function code editing state. Press the SET key again, "" will be displayed. You must input the user password correctly to enter the parameter interface.									
F6-04	Set Inverter Power on Time	0	0	17520	hour	☆				
10-04	After the accumulated power		•							
	reports a fault Err20. The fund									
F6-05	Set Inverter Running Time	0.0	0.0	6500.0	min	<i>;</i> .				
T 0-03				l	<u> </u>					
	When the frequency converte			=	_					
		this value, the frequency converter will stop automatically. This parameter is invalid when								
	the value is set to 0.									
F6-06	Switching Frequency	0	1	1						
	Adjusting with Temperature	U	1	1	-	$\stackrel{\wedge}{\Rightarrow}$				
	When the inverter detects that the radiator temperature is high, it automatically reduces									
	the switching frequency to reduce the temperature rise of the inverter. When the radiator									
	temperature is low, the switching frequency gradually returns to the set value. This									
	parameter is disabled when the value is set to 0.									
F6-07	Switching Frequency		62	450	°C	٨				
	Adjusting Start Temperature	0	63	150	\mathbb{C}	$\stackrel{\wedge}{\Longrightarrow}$				
	When the inverter detects that the radiator temperature exceeds the set value of this									
	parameter, F6-06 function is effective, and the switching frequency is adjusted with the									
	temperature.									
F6-08	Switching Frequency	•				A				
	Adjusting Time	0.1	20.0	50.0	S	\Rightarrow				
	When the inverter detects the	at the heat si	nk temperati	ure exceeds th	ne set value	of F6-07,				
	the switching frequency start		•			,				
F6-09	DPWM Switching Frequency	5.0	F8-03	F0-09	Hz	\Rightarrow				
	This parameter is valid only for									
	When the asynchronous VF is running, the wave sending mode is 7-segment continuous									
	modulation mode below this	_		_	_					
	modulation mode.	varac, arra or	Title contial	y, it is 5 segin		itterit				
		ndulation the	switch loss	of an inverter	is large hi	ıt the				
	=	For 7-segment continuous modulation, the switch loss of an inverter is large, but the								
		current ripple is small; The switching loss is small, and the current ripple is large in the 5 -								
	_	segment discontinuous modulation mode. However, it may lead to instability of motor operation at high frequency, and generally does not need to be modified.								
F6-10	Excessive Speed Deviation	and Scherally	4003 1100 110	ca to be mou						
1.0-10	Detection Value	0.0	30.0	100.0	%	$\stackrel{\wedge}{\sim}$				
F6-11	Excessive Speed Deviation									
T-11	Detection Time	0.0	5.0	60.0	S	$\stackrel{\wedge}{\Longrightarrow}$				
		 	otor contuct	of cocod	On 14/b = 1	aic				
	This function is only valid whe	en there is ve	ctor control o	of speed sens	or. When tl	his				

	parameter is 0.0s, the detecti	on of excess	ive speed dev	viation will be	cancelled.						
F6-12	Motor Overload Protection Gain	0.20 1.00 10.00 - \$\frac{1}{2}									
	Used to adjust the gain multip	Used to adjust the gain multiple of the set value of overload current in the inverter.									
	Note: Increasing this parameter means increasing the overload current, so improper setting										
	may burn out the motor.										
F6-13	External Temperature	0	0	2		٨					
	Sensor Type 0 0 3 - ${\swarrow}$										
	0: Disable.										
	1: PT100										
	2: PT1000										
	3: 5k NTC resistance										
F6-14	Overtemperature Protection	0	200	200	$^{\circ}$	\Rightarrow					
	Threshold	0 200 200 C									
	When the temperature of the external sensor exceeds the protection threshold, the										
	inverter will give an alarm.										
F6-15	Start Protection Selection	0	0	1	-	\Rightarrow					
	If the parameter is set to 1, the inverter will not respond to the running command if the										
	running command is valid wh	running command is valid when the inverter is powered on or after a fault is reset. The									
	running command must be re	emoved once	before the ir	nverter respor	nds to the	running					
	command.	1		1							
F6-16	Fault Enable Selection 1	00000	01111	11111	-	\Rightarrow					
	0: Protection is prohibited.	1: Enable pi	rotection								
	Bit: Relay closing fault										
	Ten bits: Output open-phase protection.										
	Hundred bits: Input open-phase protection.										
	Thousand bit: Power-on short-circuit protection to ground.										
	Ten thousand bits: output detection before operation (including grounding and phase loss)										
F6-17	Fault Enable Selection 2	00000	00001	11111	-	\Rightarrow					
	0: Protection is Prohibited.	1: Enable pi	rotection								
	Bit: Motor overload protection										
	·	Ten bits: Al input lower limit protection selection									
	Hundred bits: Reserved										
	Thousand bits: Reserved										
	Ten thousand bits: Reserved										
F6-18	Fault Auto Reset Times	0	0	20	time	☆					
	Inverter can automatically res		t alarm. After	this number	is exceede	d, the					
		inverter will remain in a fault state.									
	When set to 0, the automatic	reset function	on is not enak	oled.		<u> </u>					
F6-19	Fault Auto Reset Interval	0.1	1.0	100.0	second	\Rightarrow					
	Time										
	The waiting time from the inv			utomatic fault	reset.						
F6-20	Drop load protection selection	n	0 0	1	-	☆					
	0: Invalid										
	1: Valid										

1	-							
the rated frequency. If the load recovers	s, the syste	em continu	ues to run at the	e preset	frequency.			
Drop load detection level	0.0	10.0	100.0	%	☆			
Drop load detection time	0.0	1.0	60.0	S	☆			
Voltage sag function selection	0	0	2	-	*			
0: Invalid								
1: Deceleration. When the voltage o	f the inve	rter decre	ases suddenly	(includi	ng but not			
limited to instantaneous power failure	e), the in	verter dec	celerates. Whe	n the li	ne voltage			
returns to normal and the duration exce	eeds F6-25	5, the inve	rter accelerates	s to the	original set			
frequency normally.								
2: Ramp to stop. When the voltage of	of the inve	erter decre	eases suddenly	(includi	ing but not			
limited to instantaneous power failure),	the invert	ter ramps	to stop.					
When the voltage of the inverter decreas	es sudden	ly (includir	ng but not limit	ed to ins	tantaneous			
power failure), and when the busbar volt	age drops	below F6-	26, the inverter	reduces	the output			
					•			
	_							
	_			•				
			_					
normally.			C	C	1 5			
Voltage sag judging voltage	80	85	100	%	*			
Voltage sag recovery judging time	0.0	0.5	100.0	S	*			
Voltage sag action judging voltage	60	80	100	%	☆			
Voltage sag gain Kp	0	40	100	-	☆			
	duration is greater than F6-22, and the the rated frequency. If the load recovers Drop load detection level Drop load detection time Voltage sag function selection 0: Invalid 1: Deceleration. When the voltage of limited to instantaneous power failure returns to normal and the duration exception frequency normally. 2: Ramp to stop. When the voltage of limited to instantaneous power failure), when the voltage of the inverter decrease power failure), and when the busbar voltifrequency, so that the motor is in the selectric energy that feeds back to the buss so that the system can normally decelerate the duration exceeds F6-25, the invented for the first programment of the system can normally decelerate the duration exceeds F6-25, the invented for the first programment of the first prog	duration is greater than F6-22, and the output frequency. If the load recovers, the system Drop load detection level 0.0 Drop load detection time 0.0 Voltage sag function selection 0 0: Invalid 1: Deceleration. When the voltage of the investimated to instantaneous power failure), the investimated to instantaneous power failure), the investigation of the invest	duration is greater than F6-22, and the output frequency is the rated frequency. If the load recovers, the system continued to the rated frequency. If the load recovers, the system continued to the proposed detection time to the proposed detection time to the proposed detection time to the proposed detection time to the proposed detection time to the proposed detection to the pro	duration is greater than F6-22, and the output frequency is automatically the rated frequency. If the load recovers, the system continues to run at the Drop load detection level 0.0 10.0 100.0 Drop load detection time 0.0 1.0 60.0 Voltage sag function selection 0 0 2 0: Invalid 1: Deceleration. When the voltage of the inverter decreases suddenly limited to instantaneous power failure), the inverter decelerates. Whe returns to normal and the duration exceeds F6-25, the inverter accelerates frequency normally. 2: Ramp to stop. When the voltage of the inverter decreases suddenly limited to instantaneous power failure), the inverter ramps to stop. When the voltage of the inverter decreases suddenly (including but not limit power failure), and when the busbar voltage drops below F6-26, the inverter frequency, so that the motor is in the state of generating power. This fun electric energy that feeds back to the busbar voltage maintain the busbar voltage the duration exceeds F6-25, the inverter accelerates to the original normally. Voltage sag judging voltage 80 85 100 Voltage sag recovery judging time 0.0 0.5 100.0 Voltage sag action judging voltage 60 80 100	Drop load detection time O.0			

5.2.8 F7 Parameter Group – Communication Parameters

Voltage sag action deceleration time

Voltage sag integral coefficient Ki

F6-28

F6-29

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission			
F7-00	Inverter Address	1	1	249	-	☆			
	The local address when using the communication function of the inverter. When this value								
	is set to 0, it is the broadcast address, which realizes the broadcast function of the upper computer.								
F7-01	Baud Rate	0	0	4	-	\Rightarrow			
	0: 9600bps	1: 19200bps 2: 38400bps							
	3: 57600bps 4: 115200bps								
F7-02	Data Format	0	3	3	-	☆			
	0: No check -2 stop bits (8-N-	0: No check -2 stop bits (8-N-2)							
	1: Even check -1 stop bit (8-E-1)								
	2: Odd check -1 stop bit (8-O-1)								
	3: No check -1 stop bit (8-N-2	1)							
F7-03	Communication Timeout	0.0	0.0	60.0	second	\Rightarrow			
	When this parameter is set to 0.0 second, no communication timeout detection is performed.								

0

0.0

30

20.0

100

300.0

 $\stackrel{\wedge}{>\!\!\!>}$

 \bigstar

 \mathbf{S}

	When this parameter is set to more th	an 0.1 seco	ond, if the	interval betw	een one	<u>.</u>				
	communication and the next commun	ication exc	eeds the c	ommunicatio	n timeo	ut, the				
	inverter will report a communication f	ailure (Err1	6).							
F7-04	Master and slave control valid	0	0	2	-	*				
	0: Copy keyboard									
	1: Inverter synchronous mode cascade									
	2: Water supply network									
	(For 900M, this parameter is MODBU		munication	n format, see	F7-19)					
F7-05	Master and slave selection	0	0	1	-	*				
	0: Master									
	1: Slave									
F7-06	Number of slaves	0	1	4	-	☆				
F7-07	Slave follows master command	000	11	111	-	*				
	Bit: Slave follows command									
	Ten bits: Slave fault information transmission									
	Hundred bits: Master displays the slave is disconnected									
	0: Disable									
	1: Enabled		I	<u> </u>						
F7-08	Slave data reception	0	0	1	-	\Rightarrow				
	0: Running frequency									
	1: Target frequency		I	I						
F7-09	Master and slave communication	0.0	1.0	10.0	S	\Rightarrow				
	timeout time									
	This parameter is used to set communication outage time of master and slave, only valid									
77 40	for master. Does not take effect when		1	10.000						
F7-10	Master and slave control	0.001	0.001	10.000	S	\Rightarrow				
	communication transmission period	, ,,,	.1 1 .			<u> </u>				
	This parameter is valid only for master, setting the data transmission period of master									
D7 11	during master and slave communicatio		0.00	100.00	0/	٨				
F7-11	Torque reception data offset	-100.0	0.00	100.00	%	☆ ^				
F7-12	Torque reception data gain	-10.00	1.00	10.00	_	☆				
	·	F7-11, F7-12: correct received torque data.								
	If the offset is represented by b, the ga				ceived b	y the slave				
	is represented by x, and the actual data	_			27 11					
DE 10	Then $y = kx + b$, that is, actual torque			1		٨				
F7-13	Frequency reception data offset	-100.0	0.00	100.00	%	☆				
F7-14	Frequency reception data gain	-10.00	1.00	10.00	-	☆				
	F7-13, F7-14: correct received frequen	icy data.								
	If the offset is represented by b, the ga	_	=		ceived b	y the slave				
	is represented by x, and the actual data	_								
	Then $y = kx + b$, that is, actual frequent	cy usage d	ata=F7-14 ³	*received dat	ta+F7-13	3.				
F7-15	Slave frequency forward maximum	0.00	10.00	100.00	%	☆				
	deviation									
	Set to 0.00%, this function is invalid.									
	, , , , , , , , , , , , , , , , , , , ,									

F7-16	Slave frequency reverse maximum deviation	0.20	0.50	10.00	Hz	\Rightarrow				
	If this parameter is set for master and slave control, the speed of the master and slave be synchronized within the deviation range.									
F7-17	Droop control	0.00	0.00	10.00	Hz	☆				
	This function is generally used for load distribution when multiple motors drive t load. This parameter refers to the frequency drop of the inverter when it outputs the rated									
F7-18	Reserved									
F7-19	MODBUS data communication format	0	0	1	-	☆				
	Standard MODBUS Nonstandard MODBUS protocol									
F7-20	Enable old inverter Modbus	0	0	1	-	☆				
	0: Disable1: Enable									

5.2.9 F8 Parameter Group – Motor Control Mode

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission			
F8-00	Motor Rated Power	0.1	Depends on model	1000.0	Kw	*			
	This parameter is set to the ra	ated power o	f the motor (i	nameplate).					
F8-01	Motor Rated Voltage	1	Depends on model	500	V	*			
	This parameter is set to the re	ated voltage	of the motor	(nameplate).					
F8-02	Motor Rated Current	0.01	Depends on model	655.35	А	*			
	This parameter is set to the r	ated current	of the motor	(nameplate).		•			
F8-03	Motor Rated Frequency	0	50.0	500.0	Hz	*			
	This parameter is set to the rated frequency of the motor (nameplate).								
F8-04	Motor Rated Speed	1	1460	65535	Rpm	*			
	This parameter is set to the rated speed of the motor (nameplate).								
F8-05	Back EMF Coefficient for PM Motor	0	Depends on model	6553.5	V	*			
	This parameter is set as the back EMF coefficient of synchronous machine.								
F8-06	Motor Control Mode	0	0	2	-	*			
	0: V/F control.								
	1: Vector speed control (IMSVC) of asynchronous motor. F8-07 parameter identification is								
	required after SVC control is selected.								
	2: Vector speed control (FMSVC) of synchronous motor. F8-07 parameter identification is								
	required after SVC control is	selected.							
F8-07	Motor Parameter Autotune	0	0	3		*			

	0: No operation.								
	1: Static parameter identificat	tion. If the m	otor can't be	completely se	eparated f	rom the			
	load and can't rotate freely, p	lease choose	static parame	eter identifica	ation.				
	2: Dynamic parameter identif	2: Dynamic parameter identification. If the motor is completely disconnected from the							
	load and can rotate freely, please choose dynamic parameter identification.								
	Note: After restoring the factory setting value, changing the model or setting the motor								
	power and voltage level, it is necessary to identify the parameters again so that the vector								
	control can run best.								
F8-08	Speed/Torque Control	0	0	1					
	Selection	-	*						
	0: Speed control								
	1. Torque control								
	It is used to select the inverte	er control mo	de: speed con	trol or torqu	e control.	and the			
	torque control only works in v		-						
F8-09	Torque Setting Source								
	Selection	0	0	7	-	*			
	0: Parameter setting (F8-10)	1. Panel not	entiometer sa	etting 2:	 ДІ1				
	3: Al2 4: Communication	1. I dilei poi	entionicter 30	ttillig 2.	VII				
	5: The minimum of Al1 and A	12 6: The r	maximum of A	II and AI2					
	7: Reserved	12 0.11161	naximum or A	aria Arz					
	Choose the torque setting sou	urco Thoro a	ro sovon tora	io cottina ma	nthods				
F8-10		-200.0	120.0	+200.0	%	☆			
F6-10	Torque Setting Value				70	W			
F8-11	Torque value when F8-09 toro	que setting st		eu as u.					
Г0-11	Asynchronous Motor Stator Resistance	0.001	Depends on model	65.535	Ω	*			
F8-12									
F6-12	Asynchronous Motor Rotor	0.001	Depends	65.535	KW	*			
F0 12	Resistance		on model						
F8-13	Asynchronous Motor	0.01	Depends	655.35	mH	*			
70.44	Leakage Inductance		on model						
F8-14	Asynchronous Motor	0.1	Depends	6553.5	mH	*			
	Mutual Inductance		on model						
F8-15	Asynchronous Motor	0.01	Depends	F8-02	A	*			
	Magnetizing Current		on model						
	F8-11~F8-15 are asynchronou	-		-	_	-			
	the motor nameplate, need to								
	induction motor cannot be tu	ined on site,	you can input	the above pa	arameters	according			
	to the parameters provided b	y the motor	manufacturer.						
F8-16	Synchronous Motor Stator	0.001	Depends	65.535	Ω	*			
	Resistance	0.001	on model	05.555	\$2				
F8-17	Synchronous Motor D-axis	0.01	Depends	655.35	mH	_			
	Inductance	0.01	on model	055.55	1110	*			
F8-18	Synchronous Motor Q-axis	0.04	Depends	655.35	po I I	_1_			
	Inductance	0.01	on model	655.35	mH	*			
	F8-16~F8-18 are synchronous	motor para	meters. Some	synchronous	motor na	meplates			
	•	-		-		-			
L	will provide some parameters, but most of the motor nameplates do not provide the								

above parameters. These parameters must be obtained through parameter identification and must be identified in synchronous motor vector control mode.

5.2.10 F9 Parameter Group – Motor Control Advanced Parameter

Parameter	Description	Minimum Value	Default Value	Maximum Value	Unit	Change Permission			
F9-00	High Speed Area Switching Frequency	F9-03	10.0	F8-03	Hz	☆			
	When the running frequency is greater than this value, the speed loop PID parameter is selected as the speed loop parameter in the high-speed segment. Running frequency between high speed and low speed, the speed loop PID parameter linear transformatic of two sets of PID parameters.								
F9-01	High Speed Area Proportional Gain	1	20	100	-	☆			
	Setting the proportional coefficient of the speed regulator can adjust the speed dynamic response characteristics of vector control. Increasing the proportional gain can speed up the dynamic response of the speed loop, but excessive proportional gain may make the system oscillate. Note: The parameters of high-speed area and low-speed area are only valid when F8-06 selects vector control.								
F9-02	High Speed Area Integral Time Constant	0.01	1.00	10.00	secon d	☆			
	The speed dynamic response characteristic of vector control can be adjusted by sintegral time of the speed regulator. Shortening the integral time can accelerate dynamic response of the speed loop, but too short integral time may make the socillate.								
F9-03	Low Speed Area Switching Frequency	0.0	5.0	F9-00	Hz	☆			
	When the operating frequence parameters of speed loop.	y is less than	this value, F9	0-04 and F9-0!	5 are sele	cted as PID			
F9-04	Low Speed Area Proportional Gain	1	30	100	-	☆			
	The inverter runs at different frequencies and can select different speed loop PID parameters. When the running frequency is less than the switching frequency of the low-speed segment F9-03, the proportional gain of the speed loop is used.								
F9-05	Low Speed Area Integral Time Constant	0.01	0.50	10.00	secon d	☆			
	When the operating frequency is less than the switching frequency F9-03 in the low-speed section, the value of this parameter is used for the speed loop integral time.								
F9-06	Speed Loop Filter Time Constant	0.000	0.200	1.000	secon d	☆			
	This parameter generally does not need to be adjusted, and the filtering time can be appropriately increased when the speed fluctuation is large. If the motor oscillates, the parameter should be appropriately reduced. The speed loop filter time constant is small, and the output torque of a inverter may fluctuate greatly, but the response speed is fast.								

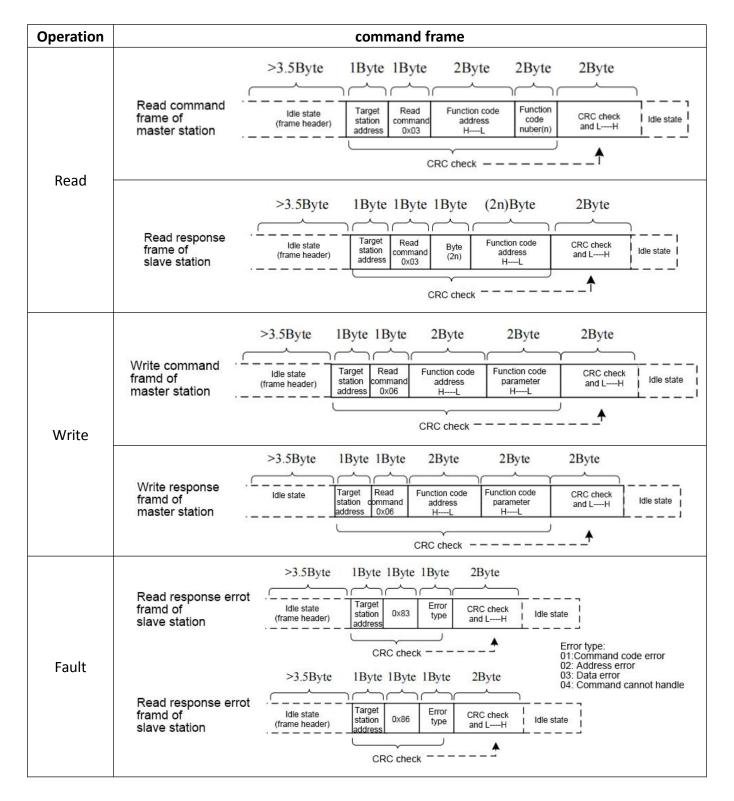
F9-07	Slip Compensation Coefficient	50	100	200	%	☆					
	accuracy of the motor: when t	For speed sensorless vector control, this parameter is used to adjust the steady speed accuracy of the motor: when the motor has a low speed, increase this parameter, and vice versa. With vector control of speed sensor, this parameter can adjust the output current of									
	down-converter with the same	e load.									
F9-08	Maximum Output Voltage 100 105 110 %										
	the maximum load capacity of ripple will aggravate the moto motor weak magnetic area wi	The maximum output voltage of inverter can be increased. Increasing F9-08 can improve the maximum load capacity of fan weak magnetic area, but the increase of motor current ripple will aggravate the motor heat. On the contrary, the maximum load capacity of motor weak magnetic area will decrease, but the ripple of motor current will reduce the motor heat. Generally, no adjustment is required.									
F9-09	Torque Control Forward Maximum Frequency	0.0	50.0	F0-09	Hz	☆					
F9-10	Torque Control Reverse Maximum Frequency	0.0	50.0	F0-09	Hz	☆					
	must be limited. If it is necessary to change the	e maximum to			If it is necessary to change the maximum torque control frequency dynamically, the upper						
F9-11			Jique control	If it is necessary to change the maximum torque control frequency dynamically, the upper limit frequency can be controlled.							
	Torque Acceleration Time	l			secon	, the upper					
EO 13	Torque Acceleration Time	0.0	0.0	6500.0	secon d	the upper ☆					
F9-12	Torque Deceleration Time	0.0	0.0	6500.0	d secon d	☆					
F9-12	Torque Deceleration Time Under the torque control mode and the load torque determined therefore, the motor speed mustress. By setting the torque of can be changed smoothly. In the torque control of small acceleration and deceleration it is suggested to increase the When the torque needs to rese	0.0 de, the difference of the speed and change rather on the start, time; If the tage of the speed filter	0.0 ence between change rate of pidly, resulting ration and defit is not record or que accelero efficient ap	6500.0 If the output to find the motor of the motor of the motor of the motor of the motor of the motor of the motor of the propriately.	d secon d orque of the local excessive me, the me set the tocal eleration	the motor pad. mechanical otor speed rque					
	Torque Deceleration Time Under the torque control mode and the load torque determined therefore, the motor speed mustress. By setting the torque of can be changed smoothly. In the torque control of small acceleration and deceleration it is suggested to increase the When the torque needs to reside deceleration time to 0.00s.	0.0 de, the differences the speed nay change ray change ray change ray change ray change ray change filter of the tage of the tage of the speed filter of the tage of the speed filter of the tage of the speed filter of the tage of the speed filter of the tage of the speed filter of the	0.0 ence between change rate of pidly, resulting ration and defit is not record or que acceleroefficient aports, set the torque	6500.0 I the output to the motor and in noise or eccleration tine mmended to ration and depropriately. The control accepts t	d secon d orque of the local excessive me, the modes are the tocal excession celeration are the tocal excession celeration are the tocal excession are	the motor pad. mechanical otor speed rque n time is set,					
F9-13	Torque Deceleration Time Under the torque control mode and the load torque determined Therefore, the motor speed mustress. By setting the torque of can be changed smoothly. In the torque control of small acceleration and deceleration it is suggested to increase the When the torque needs to resideceleration time to 0.00s. M-axis Current Loop Kp	0.0 de, the difference of the speed and the speed filter of speed filter of speed quickly	0.0 ence between change rate of pidly, resulting ration and defit is not reconorque acceleroefficient appropriate the torque acceleroefficient appropriate the torque acceleroefficient appropriate acceleroefficient acceleroeffici	6500.0 If the output to of the motor and in noise or eceleration tine mmended to ration and depropriately. If the output to output the control accompany is a control accompany to the control acc	d secon d orque of the local excessive me, the me set the tocal eleration	the motor oad. mechanical otor speed rque time is set, and					
F9-13 F9-14	Torque Deceleration Time Under the torque control mode and the load torque determined Therefore, the motor speed mustress. By setting the torque of can be changed smoothly. In the torque control of small acceleration and deceleration it is suggested to increase the When the torque needs to resideceleration time to 0.00s. M-axis Current Loop Kp M-axis Current Loop Ki	0.0 de, the differences the speed nay change raontrol acceles torque start, time; If the tapond quickly 0 0 0	0.0 ence between change rate of pidly, resulting ration and desired it is not record or que accelero efficient appropriate the torque accelero efficient appropriate efficient e	6500.0 If the output to of the motor and in noise or eceleration tine manded to ration and depropriately. If the output to output the control accompany is a second to the control accompany is a	d secon d orque of the local excessive me, the modes are the tocal excession celeration are the tocal excession celeration are the tocal excession are	the motor oad. mechanical otor speed rque time is set, and					
F9-13	Torque Deceleration Time Under the torque control mode and the load torque determined Therefore, the motor speed mustress. By setting the torque of can be changed smoothly. In the torque control of small acceleration and deceleration it is suggested to increase the When the torque needs to resideceleration time to 0.00s. M-axis Current Loop Kp	0.0 de, the differences the speed and change rather torque start, time; If the tempond quickly 0 0 0 0	0.0 ence between change rate of pidly, resulting ration and desired it is not record or que accelero efficient apple, set the torque accelero efficient apple efficient ap	6500.0 If the output to of the motor and in noise or eceleration time manded to ration and depropriately. If the motor and depropriately. If the motor and in time manded to ration and depropriately. If the output to a control according to the	d secon d orque of the local excessive me, the model excessive celeration cel	the motor oad. mechanical otor speed rque time is set, and					

	obtained after tuning, and ger	nerally does r	not need to b	e modified.						
F9-17	Synchronous Motor Flux Weakening Mode	0	1	2	-	☆				
	0: Disable. The motor is not su	bject to flux	-weakening c	ontrol. At this	time, the	maximum				
	speed of the motor is related	to the bus vo	Itage of the i	nverter. There	is no flux	k-weakening				
	current, and the output curre	nt is small, bu	ut the running	g frequency m	nay not re	ach the set				
	frequency. If you want to achi	eve a higher	speed, you ne	eed to turn or	n the flux-	weakening				
	function. 1: Automatic adjustment. It is automatically adjusted by the inverter, and the higher the									
	speed after entering the field	_	_		_					
	2: Calculation + Automatic Ad					-				
	of flux weakening current adju									
	adjustment can't meet the de	mand, but th	is mode depe	ends on the a	ccuracy of	f motor				
F0.40	parameters.									
F9-18	Synchronous Motor Flux	0	05	50	-	$\stackrel{\wedge}{\Longrightarrow}$				
	Weakening Coefficient	*In a	 	:						
		In the direct calculation mode, the required demagnetizing current can be calculated								
	according to the target speed, and the size of demagnetizing current can be manually adjusted through F9-18. The smaller the demagnetizing current is, the smaller the total									
	output current will be, but the									
F9-19	Flux Weakening Integral	desired flux	weakeiiiig e	THECE IIIAY HOE	DE acilie	veu.				
17-17	Multiple	02	02	10	-	\Rightarrow				
	Changing this parameter can change the adjustment speed of the flux weakening current.									
	However, faster adjustment of the flux weakening current may lead to instability.									
	Therefore, you do not need to manually change this parameter.									
F9-20	Saturation Margin for PM	01	05	50	%	\Rightarrow				
	Motor									
	This parameter too small will cause the output voltage to reach saturation easily, so the									
	inverter control performance v					•				
F9-21	Maximum Torque Ratio	0	0	1						
	Current Enable	0	0	1	-	\Rightarrow				
	0: Disable									
	1: Enabled									
F9-22	Salient Rate Gain Coefficient	50	100	500	-	$\stackrel{\wedge}{\simeq}$				
	Related to the structure of synchronous motor, according to the different characteristics of									
	the motor to set different salid	ent pole rate	gain coefficie	ent, generally	no need t	o set.				
F9-23	Starting Switching	1.0	3.0	F0-13	KHz	$\stackrel{\wedge}{\Rightarrow}$				
	Frequency	1.0	3.0	10-13	KIIZ	A				
	The size of the carrier frequen	cy at startup	•							
F9-24	SVC Low Speed Switching	1.0	4.0	F0-13	KHz	$\stackrel{\wedge}{\Rightarrow}$				
	Frequency									
	In SVC mode, the switching fre	equency of sy	nchronous m	notor running	at low sp	eed.				
F9-25		I	I	I	ĺ	l				
F9-25	Low Speed Switching	5.0	20.0	F8-03	H ₇	\$				
F9-25	Frequency Switching At low speed, the switching fr	5.0	20.0	F8-03	Hz	$\stackrel{\wedge}{\Sigma}$				

	of this parameter, the switchir	ng frequency	changes to tl	he set value o	f F0-13.	
F9-26	Low Speed Maximum Magnetizing Current	0	20	80	%	☆
	Set the maximum excitation co	urrent of syn	chronous mo	tor at low spe	ed.	
F9-27	Low Speed Magnetizing Current Switching Frequency	0	20.0	F8-03	Hz	☆
	The maximum magnetizing cu After reaching this frequency, parameter will change with th motor (F8-03).	it will switch	to normal cu	irrent size. Th	e default	value of this
F9-28	Low Speed Magnetizing Current Switching Frequency Bandwidth	0.0	5.0	F8-03	Hz	☆
	When the synchronous motor value of F9-27, if the current c magnetizing current is switched	hanges with	in the set ran	-		
F9-29	Synchronous Motor Initial Position Detection Mode	0	1	1	-	☆
	0: Check before each run. 1: No detection					
F9-30	Synchronous Motor Initial Position Identification Current Initial Value	30	120	180	%	*
F9-31	Synchronous Motor Initial Position Compensation Angle	0.0	0.0	359.9	o	☆
F9-32	Synchronous Motor Inductance Detection Current	30	80	120	%	☆
F9-33	Synchronous Motor Back EMF Identification Initial Current	0	50	180	%	*
F9-34	Synchronous Motor Back EMF Identification Final Current	30	80	180	%	*
F9-35	Synchronous Motor Tuning Current Loop Kp Adjustment Coefficient	1	6	100	-	☆
F9-36	Synchronous Motor Tuning Current Loop Ki Adjustment Coefficient	1	6	100	-	☆
F9-37-F9-	Reserved	0	0	1	-	$\stackrel{\wedge}{\bowtie}$

5.3 Monitoring Parameter

The monitoring parameters of the inverter can only be read and cannot be modified.


Parameter	Description	Unit	Communication Address	Parameter Attribute
U0-00	Inverter Running State 1: forward 2: reverse 3: stop	-	1000H	A
U0-01	Fault Code	-	1001H	A
U0-02	Set Frequency	0.1Hz	1002H	A
U0-03	Running Frequency	0.1Hz	1003H	A
U0-04	Running Speed	Rpm	1004H	A
U0-05	Output Voltage	V	1005H	A
U0-06	Output Current	0.1A	1006H	A
U0-07	Output Power	0.1KW	1007H	A
U0-08	DC Bus Voltage	V	1008H	A
U0-09	Output Torque	0.1Nm	1009H	A
U0-10	Power Factor Angle	-	100AH	A
U0-11	DI input state, default display DI1-DI4 effective will display +	-	100ВН	A
U0-12	Relay and DO output state, default display Relay 1 effective will display 4	-	100СН	•
U0-13	AI1 Voltage Before Correction	0.01V	100DH	A
U0-14	AI2 Voltage Before Correction	0.01V	100EH	A
U0-15	Al1 Voltage	0.01V	100FH	A
U0-16	AI2 Voltage	0.01V	1010H	A
U0-17	PID Setting	-	1011H	A
U0-18	PID Feedback	-	1012H	<u> </u>
U0-19	Remaining Running Time	0.1Min	1013H	A
U0-20	Current Power-on Time	Min	1014H	A
U0-21	Current Running Time	0.1Min	1015H	A
U0-22	Cumulative Running Time	Hour	1016H	A
U0-23 U0-24	Accumulated Power-on Time Cumulative Power Consumption	Hour Kwh	1017H 1018H	A
U0-24 U0-25	Motor Temperature Value	°C	1018H	A
U0-25	IGBT Temperature Value	\mathbb{C}	1019H	A
U0-27	Actual Switching Frequency	0.1KHz	101AH	A
U0-28	M-axis Current Actual Value	0.1A	101CH	
U0-29	T-axis Current Actual Value	0.1A	101DH	<u> </u>
U0-30	Feedback Speed Actual Value	0.1Hz	101EH	A
U0-31	Reserved	-	101FH	A
U0-32	Cascading running status of water pumps		1020H	A

U0-33	Water supply pump state	_	1021H	
U0-34	Master and slave output torque	-	1022H	A
U0-35	On-line identification of back EMF	-	1023H	A
U0-36	Timing pump switching remain time display	-	h	A
U0-37	Reserved	-	1025H	A
U0-38	Reserved	-	1026H	A
U0-39	Reserved	-	1027H	A
U0-40	Reserved	-	1028H	A
U0-41	Reserved	-	1029H	A
U0-42	Product Serial Number Lower 16 Digits	-	102AH	A
U0-43	Product Serial Number Higher 16 Digits	-	102BH	A
U0-44	Motor Boot Version	-	102CH	A
U0-45	CPU Type	-	102DH	A
U0-46	Power Board Hardware Version	-	102EH	A
U0-47	Power Board Software Version	-	102FH	A
U0-48	Control Board Software Version	-	1030H	A
U0-49	Product Number	-	1031H	A
U0-50	Manufacturer Code	-	1032H	A
U0-51	Third (most recent) Fault Code	-	1033H	A
U0-52	Second Fault Code	-	1034H	A
U0-53	First Fault Code	-	1035H	A
U0-54	Third Fault Frequency	0.1Hz	1036H	A
U0-55	Third Fault Current	0.1A	1037H	A
U0-56	Third Fault DC Bus Voltage	0.1V	1038H	A
U0-57	Third Fault Heatsink Temperature	$^{\circ}$ C	1039H	A
U0-58	Third Fault Time(from power-on time)	Min	103AH	A
U0-59	Third Fault Time(from running time)	0.1Hour	103BH	A
U0-60	Second Fault Frequency	0.1Hz	103CH	A
U0-61	Second Fault Current	0.1A	103DH	A
U0-62	Second Fault DC Bus Voltage	0.1V	103EH	A
U0-63	Second Fault Heatsink Temperature	$^{\circ}$	103FH	A
U0-64	Second Fault Time(from power-on time)	Min	1040H	A
U0-65	Second Fault Time(from running time)	0.1Hour	1041H	A
U0-66	First Fault Frequency	0.1Hz	1042H	A
U0-67	First Fault Current	0.1A	1043H	A
U0-68	First Fault DC Bus Voltage	0.1V	1044H	A
U0-69	First Fault Heatsink Temperature	$^{\circ}$	1045H	A
U0-70	First Fault Time(from power-on time)	Min	1046H	A
U0-71	First Fault Time(from running time)	0.1Hour	1047H	A

Chapter 6 Communication

6.1 Modbus-RTU Communication Protocol

The controller can read consecutive addresses at one time, with a maximum of 12 addresses, but it should be noted that it cannot exceed the last address, otherwise it will make an error. The read operation command is 0x03; The write command is 0x06, which does not support reading and writing of bytes or bits.

6.2 Modbus Register Definition

Register Number	Function Code Parameter	Function Code	Function	Range	Description
0x01	-	06/03	Set communication frequency	-10000~10000	10000 refers to 100% corresponding to the maximum frequency, 0 refers to 0% corresponding to the minimum frequency, when set to negative direction.
0x02	1	06	Control command	1~7	 forward running reverse running forward jogging reverse jogging free stop ramp to stop fault reset
0x03	-	06	Relay control	0x00~0x0F	BIT0: relay 1 control; BIT1: relay 2 control BIT2: DO1 control; BIT3: DO2 control
0x04	-	06	AO1 output control	0∼7FFF	0 corresponding output 0%, 7FFF corresponding output 100%
0x05	-	06	AO2 output control	0∼7FFF	0 corresponding output 0%, 7FFF corresponding output 100%
0xF000	F0-00	03	Command source	0~2	Refer to F0-00
				•	
0xF924	F9-36	03	Synchronous motor tuning time current loop Ki adjustment coefficient	Depend on inverter model	Refer to F9-36
0x1000	U0-00	03		Refer to	U0-00
0x1047	U0-71	03		Refer to	U0-71

All user-configurable parameters can be read or written from the hold register by the appropriate Modbus command. The register numbers of parameters F0-00 to F9-40 are defined as 0xF001 to 0xF928. The register numbers of parameters U0-00 to U0-71 are defined as 0x1000 to 0x1047.

6.3 Modbus Application Cases

6.3.1 Setting Communication Parameters

During MODBUS communication, you need to set relevant parameters first, and they can be set in F7 parameter group.

Parameter	Name	Description			
F7-00	Inverter address	The local address of the inverter when it uses the communication function. If the value is set to 0, the broadcast address is used to implement the broadcast function of the upper computer.			
F7-01	Baud Rate	0: 9600BPS 1: 19200BPS 2: 38400BPS 3: 57600BPS 4: 115200BPS			
F7-02	Data Format	0: No verification (8-N-2) 1: even check (8-E-1) 2: Odd check (8-O-1) 3: No verification (8-N-1)			
F7-03	When this parameter is set to 0.0 second, no communication timeout detection is performed. When this parameter is set to more than 0.1 second, if the interval between one communication and the next communication exceeds the communication timeout, the inverter will report a communication failure (Err16).				

6.3.2 Enable Communication Function

Parameter	Set Value	Function
F0-00: Command Mode	2	The start-stop control mode of an inverter is set as communication control. The controller writes the number "1~5" to register no.2 to control the start-stop command executed by the inverter. See Section 6.2 for the specific command.
F0-01: Target Frequency Setting Mode	8	The target frequency setting mode of an inverter is communication setting. The controller can control the target frequency of an inverter by writing the number "-10000~10000" to register No. 1. For specific command, see Section 6.2.
F1-08: Relay Output Selection	7	The inverter relay is set for communication control, and the controller writes the number "0 or 1" into the No.3 register, which can control the closing and opening of the relay.
F1-28: AO1/AO2 Output Selection 6		The analog output terminal of the inverter is set as communication control, and the controller writes numbers "0~7FFF" to register no. 4, where 0 corresponds to 0% output and 7FFF to 100% output.
F5-00: PID Setting Source F5-02: PID Feedback Source 4/2		The Modbus register No.1 of the inverter is enabled at this time, and its value is used as the given value or feedback value of PID.

Chapter 7 Maintenance and Troubleshooting

7.1 Routine Maintenance

7.1.1 Regular Inspection

Due to the influence of environmental temperature, humidity, dust and vibration, the internal devices of the inverter will be aged, resulting in potential failures of the inverter or reducing the service life of the inverter. Therefore, it is necessary to carry out daily and regular maintenance of the inverter.

<u>,</u>		
Daily Inspection Items	Regular Inspection Items	
▲ Whether the sound of the motor changes	▲ Check whether the air channel is clean	
abnormally or vibrates during running.		
▲ Does the installation environment of inverter	▲ Check whether the screws are loose.	
change.	▲ Check whether the screws are loose.	
▲ Whether the cooling fan of the inverter works	▲ Check whether the inverter is corroded.	
normally and whether there are stains.	Check whether the inverter is corroded.	
A Is the inverter everbeated	▲ Check the wiring terminals for traces of arcing	
▲ Is the inverter overheated.	pulling.	
▲ Is the inverter kept clean.		

7.1.2 Long-time Storage

If the inverter has been stored for a period of time before installation or has not been powered by the main power supply for a long time, it is necessary to age and energize the DC capacitor in the inverter according to the following instructions before operation, and the inverter can run normally after the aging is completed.

Storage	Input	Duration 1	Input	Duration 2	Input	Duration 2	Input	Duration 4
Time	Voltage 1	Duration 1	Voltage 2	Duration 2	Voltage 3	Duration 3	Voltage 4	Duration 4
Less than 1	100%			Wit	hout treatm	ent		
year								
1-2 years	100%	1 hour			Normal	running		
2~3 years	25%	0.5 hour	50%	0.5 hour	75%	0.5 hour	100%	0.5 hour
More than 3 years	25%	2 hours	50%	2 hours	75%	2 hours	100%	2 hours

7.2 Faults and Solutions

If the inverter system fails during operation, the inverter will stop output immediately to protect the motor. At the same time, the inverter fault relay acts. The inverter panel displays fault codes. The following table lists the fault types and common solutions corresponding to the fault codes.

The list in the table is for reference only. Do not repair or modify it without authorization. If you can't troubleshoot, please ask the supplier for technical support.

Fault Name	Display	Possible Causes	Solutions
Inverter Unit Protection	Err01	 The output circuit is grounded or short circuited The connecting cable of the motor is too long The module overheats The internal connections become loose The main control board is faulty The drive board is faulty The inverter module is faulty 	 Eliminate external faults Install a reactor or an output filter Check the air filter and the cooling fan Connect all cables properly Contact for technical support Contact for technical support Contact for technical support Contact for technical support
Overcurrent During Acceleration	Err02	 The output circuit is grounded or short circuited The control method is vector and no parameter identification The acceleration time is too short Manual torque boost or V/F curve is not appropriate The voltage is too low The startup operation is performed on the rotating motor. A sudden load is added during acceleration The inverter model is of too small power class 	 Eliminate external faults Perform the motor auto-tuning Increase the acceleration time Adjust the manual torque boost or V/F curve Adjust the voltage to normal range Select rotational speed tracking restart or start the motor after it stops Remove the added load. Select higher power rating inverter
Overcurrent During Deceleration	Err03	1. The output circuit is grounded or short circuited 2. The control method is vector and no parameter identification 3. The deceleration time is too short 4. The voltage is too low 5. A sudden load is added during deceleration 6. The braking unit and braking resistor are not installed	 Eliminate external faults Perform the motor auto-tuning Increase the deceleration time Adjust the voltage to normal range Remove the added load. Install the braking unit and braking resistor

Fault Name	Display	Possible Causes	Solutions
Overcurrent at Constant Speed	Err04	1. The output circuit is grounded or short circuited 2. The control method is vector and no parameter identification 3. The voltage is too low 4. A sudden load is added during deceleration 5. The inverter model is of too small power class	 Eliminate external faults Perform the motor auto-tuning Adjust the voltage to normal range Remove the added load. Select higher power rating inverter
Overvoltage During Acceleration	Err05	 The input voltage is too high An external force drives the motor during acceleration The acceleration time is too short The braking unit and braking resistor are not installed 	 Adjust the voltage to normal range Cancel the external force or install a braking resistor Increase the acceleration time Install the braking unit and braking resistor
Overvoltage During Deceleration	Err06	 The input voltage is too high An external force drives the motor during deceleration The deceleration time is too short The braking unit and braking resistor are not installed 	 Adjust the voltage to normal range Cancel the external force or install a braking resistor Increase the deceleration time Install the braking unit and braking resistor
Overvoltage at Constant Speed	Err07	 The input voltage is too high An external force drives the motor during running 	 Adjust the voltage to normal range Cancel the external force or install a braking resistor
Control Power Supply Fault	Err08	The input voltage is not within the allowable range	1. Adjust the voltage to normal range
Undervoltage	Err09	1. Instantaneous power failure 2. The inverter's input voltage is not within the allowable range 3. The DC bus voltage is abnormal 4. The rectifier bridge and buffer resistor are faulty 5. The drive board is faulty 6. The main control board is faulty	 Reset the fault Adjust the voltage to normal range Contact for Technical support
Inverter Overload	Err10	 The load is too heavy or locked rotor occurs on the motor The inverter model is of too small power class 	 Reduce the load and check the motor and mechanical condition Select an inverter of higher power class

Fault Name	Display	Possible Causes	Solutions
Motor Overload	Err11	 1. P9-01 is set improperly 2. The load is too heavy or locked rotor occurs on the motor 3. The inverter model is of too small power class 	 Set P9-01 correctly Reduce the load and check the motor and mechanical condition Select higher power rating inverter
Power Input Phase Loss	Err12	 The three-phase power input is abnormal The drive board is faulty The lightening board is faulty The main control board is faulty 	 Eliminate external faults Contact for Technical support Contact for Technical support Contact for Technical support
Power Output Phase Loss	Err13	 The cable connecting the inverter and the motor is faulty The inverter's three-phase outputs are unbalanced when the motor is running The drive board is faulty The module is faulty 	 Eliminate external faults Check whether the motor three-phase winding is normal Contact for Technical support Contact for Technical support
Module Overheat	Err14	 The ambient temperature is too high The air filter is blocked The fan is damaged The thermally sensitive resistor of the module is damaged The inverter module is damaged 	 Lower the ambient temperature Clean the air filter Replace the damaged fan Replace the damaged thermally sensitive resistor Replace the inverter module
External Equipment Fault	Err15	 External fault signal is input via DI External fault signal is input via virtual I/O 	Reset the operation Reset the operation
Communication Fault	Err16	 The controller is in abnormal state The communication cable is faulty The communication parameters are set improperly 	 Check the cabling of host computer Check the communication cabling Set the communication parameters properly
Contactor Fault	Err17	 The drive board and power supply are faulty The contactors is faulty 	 Replace the faulty drive board or power supply board Replace the faulty contactor
Current Detection Fault	Err18	 The HALL device is faulty The drive board is faulty 	 Replace the faulty HALL device Replace the faulty drive board

Fault Name	Display	Possible Causes	Solutions
Motor Auto-tuning Fault	Err19	 The motor parameters are not set according to the nameplate The motor auto-tunning times out 	 Set the motor parameters according to the nameplate properly Check the cable connecting the inverter and the motor
EEPROM Write Fault	Err21	1. The EEPROM chip is damaged	1. Replace the main control board
Inverter Hardware Fault	Err22	1、Overvoltage 2、Overcurrent	Solve as overvoltage fault Solve as overcurrent fault
Short Circuit to Ground	Err23	The motor is short circuited to the ground	1. Replace the cable or motor
Accumulative Running Time Reached	Err26	The accumulative running time reaches the setting value	Clear the record through the parameter initialization function
Accumulative Power-on Time Reached	Err29	The accumulative power-on time reaches the setting value	Clear the record through the parameter initialization function
Pulse-by-pulse Current Limit Fault	Err40	 The load is too heavy or locked rotor occurs on the motor The inverter model is of too small power class 	 Reduce the load and check the motor and mechanical condition Select an inverter of higher power class
Motor Switchover Fault During Running	Err41	Change the selection of the motor via terminal during running of the inverter	Perform motor switchover after the inverter stops
Excessive Speed Deviation Fault	Err42	 Excessive Speed deviation Inspection parameter P6-10, P6-11 Setting is not correct No parameter identification 	 Correctly Setting Parameter P6-10, P6-11. Executive parameter identification
Water Shortage alarm	A52	 Pressure sensor is damaged Check whether the parameters of the inverter are incorrectly set Whether the pipe network and motor are correct 	 Check pressure sensor Check inverter parameter setting Check motor and pipe
Overpressure Fault	Err53	 Pressure sensor is damaged Check whether the parameters of the inverter are incorrectly set 	 check the pressure sensor Test whether the inverter F5-18 is correctly set

7.3 Common Faults and Solutions

The following faults may be encountered during the use of the inverter. Refer to the following table for simple fault analysis:

SN	Fault	Possible Causes	Solutions
1	There is no display at power-on	 There is no power supply to the inverter or the power input to the inverter is too low The power supply of the switch on the drive board of the inverter is faulty The rectifier bridge is damaged The buffer resistor is faulty The control board or the operation panel is faulty The cable connecting the control board and the drive board, and the operation panel breaks 	 Check the power supply Check the DC bus voltage Re-connect the 10-core cables 4~6. Contact us for technical support
2	"Err23" is displayed at power-on	 The motor or the motor output cable is short circuited to the ground The inverter is damaged 	 Measure the insulation of the motor and the output cable with a megger Contact us for technical support
3	Err14 (Module overheat) fault alarm frequently	 The setting of switching frequency is too high The cooling fan is damaged, or the air filter is blocked Components inside the inverter are damaged (thermocouple or other) 	 Reduce the switching frequency (P0-13) Replace the fan and clean the air filter Contact us for technical support
4	The motor does not rotate after the inverter runs	1. Check the motor and the motor cables 2. The inverter parameters are set improperly (Motor parameters) 3. The cable between the drive board and the control board is in poor contact 4. The drive board is faulty	 Ensure the cable between the inverter and the motor is normal Replace the motor or clear mechanical faults Check the re-set motor parameters Contact us for technical support
5	The DI terminals are disabled	 The parameters are set incorrectly The external signal is incorrect The control board is faulty 	 Check and reset the parameters in group P4 Re-connect the external signal cables Contact us for technical support

SN	Fault	Possible Causes	Solutions
6	The inverter overcurrent and overvoltage frequently	 The motor parameters are set improperly The acceleration/deceleration time is improper The load fluctuates 	 Re-set motor parameters or re-perform the motor auto-tunning Set proper acceleration/deceleration time Contact us for technical support
7	Err17 alarm when power-on or running	The soft startup contactor is not picked up	 Check whether the contactor cable is loose Check whether the contactor is faulty Check whether 24V power supply of the contactor is faulty Contact us for technical support

7.4 Warranty Agreement

- (1) Free warranty only refers to the inverter itself.
- (2) In case of failure or damage within the warranty terms, our company is responsible for 12 months warranty (from the date of delivery, the bar code on the fuselage shall prevail, and if there is a contract agreement, it shall be implemented according to the agreement). For more than 12 months, we will charge a reasonable maintenance fee;
- (3) During the warranty period, our company will charge a certain maintenance fee if:
 - a) Machine damage caused by the user's failure to comply with the regulations in the user manual;
 - b) Machine damage caused by mistakes in use and unauthorized maintenance and modification;
 - c) Damage caused by fire, flood, abnormal voltage, etc.;
 - d) Damage caused by using the inverter for abnormal functions;
 - e) Damage caused by man-made falling and transportation after purchase;
 - f) Failure and damage caused by obstacles outside the machine (such as external equipment factors);
- (4) The service fee is calculated according to the uniform standard of the manufacturer. If there is a contract, the contract will take precedence.
- (5) If there is any problem in the service process, please contact the supplier in time.
- (6) The final interpretation right of warranty instructions belongs to our company.

Warranty Card

	Address:		
Customer	Name:	Contact:	
Information	Postal code:	Tel:	
	Product model:		
Product Information	Fuselage Bar code (posted here):		
Agent name:			
Fault Information			

Ce		•	•	
	rtı	11	162	ιΤΔ
	L			ונכ

This product has gone through rigorous quality control tests at factory.

Inspector	
Approval Mark	