Lift vector AC Drives

SIEIDrive LIFT

AGy -L

___Instruction manual

Table of Contents

Safety Symbol Legend	48
1 - Safety Precautions	48
1.1 Discharge time of the DC-Link	
2 - Introduction	50
3 - Environment	
3.2 Storage and transport	
3.4 Input	
3.5 AC Output	
3.6 Open-Loop and Closed-Loop control section	
3.7 Accuracy	
3.8 Dimensions and installation guidelines	
4 - Wiring Procedure	
4.1 Power Section	
4.2 Cooling fans	
4.3 Regulation Section	
5	
5 - Drive Keypad Operation	
5.1 Keypad	
5.2 Language selection	
5.4 Scrolling through the drive parameters	
5.5 Parameters modification	
6 - Commissioning suggestions	
7 - Default lift configuration	69
7 - Default lift configuration	
•	69
7.1 Command Logic	69 73
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication	
7.1 Command Logic	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board)	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board)	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply 8.3 Encoder sign test	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply 8.3 Encoder sign test 8.4 Encoder cable break control function	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply 8.3 Encoder sign test 8.4 Encoder cable break control function 9 - Emergency Operation	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply 8.3 Encoder sign test 8.4 Encoder cable break control function 9 - Emergency Operation 10 - Troubleshooting	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply 8.3 Encoder sign test 8.4 Encoder cable break control function 9 - Emergency Operation 10 - Troubleshooting 10.1 Drive Alarm Condition	
7.1 Command Logic 7.2 Lift Sequence 7.2.1 Lift-dedicated digital output functions 7.2.2 Speed indication 7.3 Ramp Function 7.3.1 Space calculation and acceleration / deceleration ramps settings 7.3.2 Short Floor Function 7.4 Startup Menu 7.5 Menù Display 8 - Encoder Interface (EXP-ENC-AGy option board) 8.1 Wiring 8.2 Setting of encoder power supply 8.3 Encoder sign test 8.4 Encoder cable break control function 9 - Emergency Operation 10 - Troubleshooting 10.1 Drive Alarm Condition 10.2 Alarm Reset	

Safety Symbol Legend

Indicates a procedure, condition, or statement that, if not strictly observed, could result in personal injury or death.

Indicates a procedure, condition, or statement that, if not strictly observed, could result in damage to or destruction of equipment.

Indicates a procedure, condition, or statement that should be strictly followed in order to optimize these applications.

Note!

Indicates an essential or important procedure, condition, or statement.

1 - Safety Precautions

According to the EEC standards the AGy -L and accessories must be used only after checking that the machine has been produced using those safety devices required by the 89/392/EEC set of rules, as far as the machine industry is concerned. These standards do not apply in the Americas, but may need to be considered in equipment being shipped to Europe.

drive systems cause mechanical motion. It is the responsibility of the user to insure that any such motion does not result in an unsafe condition. Factory provided interlocks and operating limits should not be bypassed or modified.

Electrical Shock and Burn Hazard:

When using instruments such as oscilloscopes to work on live equipment, the oscilloscope's chassis should be grounded and a differential amplifier input should be used. Care should be used in the selection of probes and leads and in the adjustment of the oscilloscope so that accurate readings may be made. See instrument anufacturer's instruction book for proper operation and adjustments to the instrument.

Fire and Explosion Hazard:

Fires or explosions might result from mounting Drives in hazardous areas such as locations where flammable or combustible vapors or dusts are present. Drives should be installed away from hazardous areas, even if used with motors suitable for use in these locations.

Strain Hazard:

Improper lifting practices can cause serious or fatal injury. Lift only with adequate equipment and trained personnel.

Drives and motors must be ground connected according to the NEC.

Replace all covers before applying power to the drive. Failure to do so may result in death or serious injury.

Adjustable frequency drives are electrical apparatus for use in industrial installations. Parts of the Drives are energized during operation. The electrical installation and the opening of the device should therefore only be carried out by qualified personnel. Improper installation of motors or Drives may therefore cause the failure of the device as well as serious injury to persons or material damage. drive is not equipped with motor overspeed protection logic other than that controlled by software. Follow the instructions given in this manual and observe the local and national safety regulations applicable.

Always connect the drive to the protective ground (PE) via the marked connection terminals (PE2) and the housing (PE1). AGy -L Drives and AC Input filters have ground discharge currents greater than 3.5 mA. EN 50178 specifies that with discharge currents greater than 3.5 mA the protective conductor ground connection (PE1) must be fixed type and doubled for redundancy.

The drive may cause accidental motion in the event of a failure, even if it is disabled, unless it has been disconnected from the AC input feeder.

Never open the device or covers while the AC Input power supply is switched on. Minimum time to wait before working on the terminals or inside the device is listed in section 1.1.

If the front plate has to be removed because of ambient temperature higher than 40 degrees, the user has to ensure that no occasional contact with live parts may occur.

Do not connect power supply voltage that exceeds the standard specification voltage fluctuation permissible. If excessive voltage is applied to the drive, damage to the internal components will result.

Do not operate the drive without the ground wire connected. The motor chassis should be grounded to earth through a ground lead separate from all other equipment ground leads to prevent noise coupling.

The grounding connector shall be sized in accordance with the NEC or Canadian Electrical Code.

The connection shall be made by a UL listed or CSA certified closed-loop terminal connector sized for the wire gauge involved. The connector is to be fixed using the crimp tool specified by the connector manufacturer

Do not perform a megger test between the drive terminals or on the control circuit terminals.

Because the ambient temperature greatly affects drive life and reliability, do not install the drive in any location that exceeds the allowable temperature. Leave the ventilation cover attached for temperatures of 104° F (40° C) or below.

If the Drive's Fault Alarm is activated, consult the chapter 10. TROUBLESHOOTING of this instruction book, and after correcting the problem, resume operation. Do not reset the alarm automatically by external sequence, etc.

Be sure to remove the desicant dryer packet(s) when unpacking the drive. (If not removed these packets may become lodged in the fan or air passages and cause the drive to overheat).

The drive must be mounted on a wall that is constructed of heat resistant material. While the drive is operating, the temperature of the Drive's cooling fins can rise to a temperature of 194° F (90°C).

Do not touch or damage any components when handling the device. The changing of the isolation gaps or the removing of the isolation and covers is not permissible.

Protect the device from impermissible environmental conditions (temperature, humidity, shock etc.)

No voltage should be connected to the output of the drive (terminals U2, V2 W2). The parallel connection of several drives via the outputs and the direct connection of the inputs and outputs (bypass) are not permissible.

A capacitative load (e.g. Var compensation capacitors) should not be connected to the output of the drive (terminals U2, V2, W2).

The electrical commissioning should only be carried out by qualified personnel, who are also responsible for the provision of a suitable ground connection and a protected power supply feeder in accordance with the local and national regulations. The motor must be protected against overloads.

No dielectric tests should be carried out on parts of the drive. A suitable measuring instrument (internal resistance of at least 10 $k\Omega/V$) should be used for measuring the signal voltages.

In case of a three phase supply not symmetrical to ground, an insulation loss of one of the devices connected to the same network can cause functional problem to the drive, if the use of a delta/wye transformer is avoided (see par. 3.4).

Note!

If the Drives have been stored for longer than two years, the operation of the DC link capacitors may be impaired and must be "reformed".

Before commissioning devices that have been stored for long periods, connect them to a power supply for two hours with no load connected in order to regenerate the capacitors, (the input voltage has to be applied without enabling the drive).

Note!

The terms "Inverter", "Controller" and "Drive" are sometimes used interchangably throughout the industry. We will use the term "drive" in this document.

1.1 Discharge time of the DC-Link

Туре	I _{2N}	Time (seconds)
2040	8.3	
2055	11	205
2075	15.4	
3110	21.6	220
3150	28.7	220
4185	34	
4221	40	60
4301	54	
4371	68	90
5450	81	
5550	99	
6750	124	
7900	161	120
71100	183	120
71320	218	
81600	282	
82000	348	

tab030

Tabella 1.1 DC Link Discharge Times

This is the minimum time that must be elapsed since a drive is disconnected from the AC Input before an operator may service parts inside the drive to avoid electric shock hazard.

Condition: These values consider a turn off for a drive supplied at 480Vac +10%, without any option, (the charge

for the switching supply is the regulation card, the keypad and the 24Vdc fans "if mounted").

The drive is disabled. This represents the worst case condition.

2 - Introduction

AGy -L is a series of dedicated drives used to control lift asynchronous motors ranging from 4.0 to 200 kW. Thanks to the special lift application software, it is best used in case of plant modernization and, in general, in all open loop applications up to 1 m/s and higher in all closed loop applications, by using EXP-ENC-AGy option.

The easy and adaptable programming procedure can be managed via the alphanumeric keyboard or via the PC configurator and it allows the drive fast commissioning.

Available options on demand:

- External EMC input filters
- External Input / Output chokes
- External braking resistors (connected between terminals C and BR1)
- Multilingual programming keypad complete with alphanumeric display: KBG-LCD-L (IT-ENG) (cod. S504K)
- Remote keypad kit
- E2PROM PRG-KEY key (cod. S6F38)
- I/O expansion card: EXP-D6A1R1-AGy (cod. S524L)
- 120 Vac digital input interface card: EXP-D8-120 (cod. S520L)
- Profibus interface card: SBI-PDP-AGy (cod. S5H28)
- Emergency Module MW22.

3 - Environment

3.1 Environmental Conditions

T _A Ambient temperature	[°C] 0 +40; +40+50 with derating,
	[°F] 32 +104; +104+122 with derating
Installation location	Pollution degree 2 or better (free from direct sunligth, vibration, dust, corrosive or inflammable gases, fog, vapour oil and dripped water, avoid saline environment)
Installation altitude	Up to 1000m (3281 feet) above sea level; for higher altitudes a current reduction of 1.2% for every 100m (328 feet) of additional height applies.
Operation temperature (1) _	040°C (32°104°F)
Operation temperature (2) _	050°C (32°122°F)
Air humidity (operation)	5 % to 85 %, 1 g/m² to 25 g/m³ without moisture condensation or icing (Class 3K3 as per EN50178)
Air pressure (operation)	[kPa] 86 to 106 (Class 3K3 as per EN50178)
(1) Over 40°C (104°F):	- current reduction of 2% of rated output current per K
	- remove front plate (better than class 3K3 as per EN50178).
(2)	- Current derated to 0.8 rated ouput current
	- Over 40°C (104°F): removal of the top cover (better than class 3K3 as per EN50178)

3.2 Storage and transport

Temperature:	
storage	25+55°C (-13+131°F), (class 1K4 as per EN50178)
	-20+55°C (-4+131°F), for devices with keypad
transport	25+70°C (-13+158°F), class 2K3 as per EN50178,
	-20+60°C (-4+140°F), for devices with keypad
Air humidity :	
storage	5% to 95 %, 1 g/m² to 29 g/m³ (Class 1K3 as per EN50178)
transport:	95 % (3) 60 g/m (4)
	A light condensation of moisture may occur for a short time occasionally if the device is not in operation (class 2K3 as per EN50178)
Air pressure:	
storage	_[kPa] 86 to 106 (class 1K4 as per EN50178)
transport	_[kPa] 70 to 106 (class 2K3 as per EN50178)

- Greatest relative air humidity occurs with the temperature @ 40° C (104° F) or if the temperature of the device is brought suddenly from $25 \dots + 30^{\circ}$ C ($-13^{\circ} \dots + 86^{\circ}$ F).
- (4) Greatest absolute air humidity if the device is brought suddenly from 70...15°C (158°...59°F).

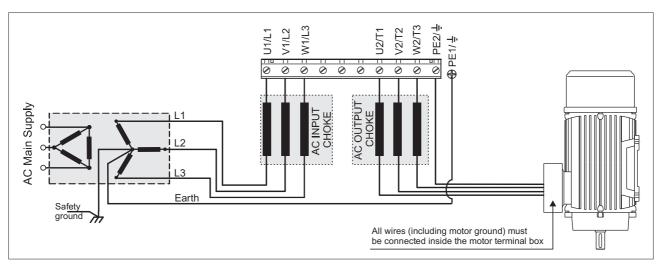
3.3 Standard

General standards	_ EN 61800-1, IEC 143-1-1.
Safety	_ EN 50178, UL 508C
Climatic conditions	_ EN 60721-3-3, class 3K3. EN 60068-2-2, test Bd.
Clearance and creepage	_EN 50178, UL508C, UL840. Overvoltage category for mains connected circuits: III; degree of pollution 2
Vibration	_ EN 60068-2-6, test Fc.
EMC compatibility	_EN61800-3:2004
Rated input voltages	_IEC 60038
Protection degree	_IP20 according to EN 60529
	IP54 for the cabinet with externally mounted heatsink, only for sizes from 2040 to 3150
Approvals	_CE, UL, cUL.

3.4 Input

Type		2040	2055	2075	3110	3150	4185	4220	4300	4370	5450	5550	6750	7900	71100	71320	81600	82000
U _{LN} AC Input voltage	[V]				•		•	230	V -15%	6 48	30 V +1	0%, 3F	h					
AC Input frequency	[Hz]								Ę	50/60 H	lz ±5%							
I _N AC Input current for																		
continuous service :																		
- Connection with 3-phase reactor																		
@ 230Vac; IEC 146 class 1	[A]	7	9.5	14 *	18.2	25 *	32.5	39	55	69	84	98	122	158	192	220	275	n.a.
@ 400Vac; IEC 146 class 1	[A]	7.9	10.7	15.8 *	20.4	28.2 *	36.7	44	62	77	94	110	137	177	216	247	309	365
@ 460Vac; IEC 146 class 1	[A]	7	9.3	13.8 *	17.8	24.5 *	32.5	37	53	66	82	96	120	153	188	214	268	318
- Connection without 3-phase reactor																		
@ 230Vac; IEC 146 class 1	[A]	11	11 15.5 21.5 * 27.9 35.4 *															
@ 400Vac; IEC 146 class 1	[A]	12	16.9	24.2 *	30.3	40 *			For	these t	ypes ar	extern	al induc	tance i	s recomi	mended		
@ 460Vac; IEC 146 class 1	[A]	10.4	14.7	21 *	26.4	34.8 *												
Max short circuit power without line reactor (Zmin=1%)	[kVA]	650	850	1200	1700	2250	2700	3200	4200	5500	6400	7900	9800	12800	14500	17300	22400	27700
Overvoltage threshold (Overvoltage)	[V]					44	10VDC	*		,,	320VD0 30VAC		00VAC r	mains),				
Undervoltage threshold (Undervoltage)	[V]		230VDC (for 230VAC mains), 380VDC (for 400VAC mains), 415VDC (for 460VAC mains)															
Braking IGBT Unit Standard internal (with external resistor); MAX Braking torque:		15	0%	70%	90	0%							150%					

*: For the specified power sizes, the external reactor is strongly recommended


Power Supply and Grounding

- 1) Drives are designed to be powered from standard three phase lines that are electrically symmetrical with respect to ground (TN or TT network).
- 2) In case of supply with IT network, the use of delta/wye transformer is mandatory, with a secondary three phase wiring referred to ground.

In case of a three phase supply not symmetrical to ground, an insulation loss of one of the devices connected to the same network can cause functional problem to the drive, if the use of a delta/wye transformer is avoided.

Please refer to the following connection sample.

Mains connection and inverter output

The drivea must be connected to an AC mains supply capable of delivering a symmetrical short circuit current lower or equal to the values indicated on table. For the use of an AC input choke see chapter 4.

Note from the table the allowable mains voltages. The cycle direction of the phases is free. Voltages lower than the min. tolerance values can cause the block of the inverter.

Adjustable Frequency Drives and AC Input filters have ground discharge currents greater than 3.5 mA. EN 50178 specifies that with discharge currents greater than 3.5 mA the protective conductor ground connection (PE1) must be fixed type.

AC Input Current

Note!

The Input current of the drive depends on the operating state of the connected motor. The tables (chapter 3.4) shows the values corresponding to rated continuous service, keeping into account typical output power factor for each size.

3.5 AC Output

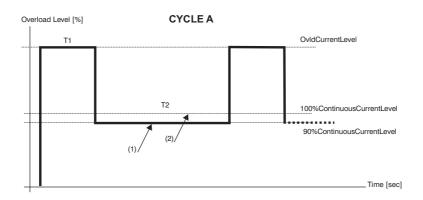
Туре	\Box	2040	2055	2075	3110	3150	4185	4221	4301	4371	5450	5550	6750	7900	71100	71320	81600	82000
Inverter Output (IEC 146 class1), Continuous service (@ 400Vac)	[kVA]	6.5	8.5	12	16.8	22.4	26.5	32	42	55	64	79	98	128	145	173	224	277
Inverter Output (IEC 146 class 2) 150% overload for 60s (@ 400Vac)	[kVA]	5.9	7.7	10.9	15.3	20.3	24.1	29	38.2	50	58.3	72	89.2	116.5	132	157.5	204	252
P _N mot (recommended motor output):																		
@ U _{LN} =230Vac; f _{SW} =default; IEC 146 class 1	[kW]	2.2	3	4	5.5	7.5	10	11	18.5	22	22	30	37	55	55	75	90	100
@ U _{LN} =230Vac; f _{SW} =default; IEC 146 class 2	[kW]	2.2	3	4	5.5	7.5	9	11	15	18.5	22	30	37	45	55	55	90	100
@ U _{LN} =230Vac; f _{SW} =default; IEC 146 class 1	[Hp]	3	4	5	7.5	10	10	15	25	30	30	40	50	75	75	100	125	125
@ U _{LN} =230Vac; f _{SW} =default; IEC 146 class 2	[Hp]	3	4	5	7.5	10	10	15	20	25	30	40	50	60	75	75	100	125
@ U _{LN} =400Vac; f _{SW} =default; IEC 146 class 1	[kW]	4	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200
@ U _{LN} =400Vac; f _{SW} =default; IEC 146 class 2	[kW]	4	5.5	7.5	11	15	18.5	22	30	37	45	55	55	90	90	110	160	200
@ U _{LN} =460Vac; f _{SW} =default; IEC 146 class 1	[Hp]	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150	150	200	250
@ U _{LN} =460Vac; f _{SW} =default; IEC 146 class 2	[Hp]	5	7.5	10	15	20	20	25	30	40	50	60	75	100	125	150	200	250
U ₂ Max output voltage	[V]							0).94 x U	_{LN} (AC	Input v	oltage)						
f ₂ Max output frequency	[Hz]					500									200			
I _{2N} Rated output current:																		
@ U _{LN} =230-400Vac; f _{SW} = default; IEC 146 class 1		9.6	12.6	17.7	24.8	33	39	47	63	79	93	114	142	185	210	250	324	400
@ U _{LN} =230-400Vac; f _{SW} =default; IEC 146 class 2	[A]	8.7	11.5	16.1	22.5	30	35	43	58	72	85	104	129	168	191	227	295	364
@ U _{LN} =460Vac; f _{SW} =default; IEC 146 class 1	[A]	8.3	11	15.4	23.1	29.7	34	40	54	68	81	99	124	161	183	218	282	348
@ U _{LN} =460Vac; f _{SW} =default; IEC 146 class 2	[A]	7.6	10	14.0	21.0	27.0	31	36	50	62	74	90	112	146	166	198	257	317
f _{sw} switching frequency (Default)	[kHz]	Ĺ				8									4			
f _{sw} switching frequency (Higher)	[kHz]					16								8			4	-
Derating factor:																		
Voltage Factor K _V at 460 Vac *			0.87		0.93	0.9							0.87					
Temp. Factor K _⊤ for ambient temperature									0.8	@ 50°0	C (122°	F)						
Switching frequency K _F									0.	7 for hi	gher f _{sv}	,						
																		Output-a

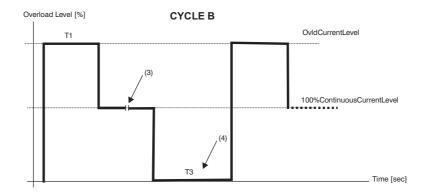
Output-g

The output of the drive is ground fault and phase to phase output short protected.

Nota!

The connection of an external voltage to the output terminals of the drive is not permissible! It is allowed to disconnect the motor from the drive output, after the drive has been disabled.


The rated value of direct current output (I_{CONT}) depends on the supply voltage (K_v), the ambient temperature (K_T) and the switching frequency (K_T) if higher than the default setting: $I_{CONT} = I_{2N} \times K_v \times K_T \times K_{sw}$ (Values of derating factor are the listed on table), with an overload capacity $I_{MAX} = 1.5 \times I_{CONT}$ for 60 seconds.


^{*:} Linear shapes for K_v, K_r, respectively in the ranges [400, 460] Vac, [40, 50]°C, (104, 122)°F.

Model	Continuous current @400V	Overload factor	T1 Overload time	Overload current	T2 Overload pause time @90% Cont curr	T3 Overload pause time @ 0% Cont curr	LOW Frequency < 3Hz overload factor	LOW Frequency < 3Hz overload time	
	[A]		[sec]	[A]	[sec]	[sec]		[sec]	
2040	9.6			17.6					
2055	12.6			23.1			1.5		
2075	17.7			32.4					
3110	24.8]		45.4					
3150	33	1.83	10	60.4	124	24		2	
4185	39			71.4					
4221	47]		86.0					
4301	63]		115.3			1.36		
4371	79			144.6					

TL2020g

Table 3.5.1-A: Overload Availability (Sizes 2040 ... 4371)

- (1) Load current must be reduced to 90% level to allow next overload cycle.
- (2) Drive current is limited to 100% level when drive overload alarm is selected as Ignore or Warning.
- (3) No limit on duration of this time interval @100% Cont current.
- (4) Next overload cycle is allowed after T3.

Figure 3.5.1-A: Overload Duty Cycle (Sizes 2040 ... 4371)

Model	Continuous current @400V	SLOW Overload factor	T1 SLOW Overload time	SLOW Overload current	T2 SLOW Overload pause time @90% Cont curr	FAST Overload factor	TF FAST Overload time [sec]	FAST Overload current	LOW Frequency < 3Hz overload factor	LOW Frequency < 3Hz overload time
	[A]		[sec]	[A]	[sec]		[sec]	[A]		[sec]
5450	93			126.5		1.83	0.5	170.2	4.20	
5550	114			155				208.6		
6750	142			193.1	1			259.9		
7900	185	1.36	60	251.6	300	1.03		338.6		2
71100	210	1.30	60	285.6	300			384.3	1.36	
71320	250			340	1			457.5	1	
81600	324			440.6]	1.4	1.0	453.6		
82000	400			544.0		1.4	1.0	560.0	1	

TL2021g

Table 3.5.1-B: Overload Availability (Sizes 5450... 82000)

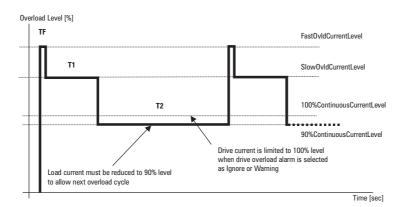
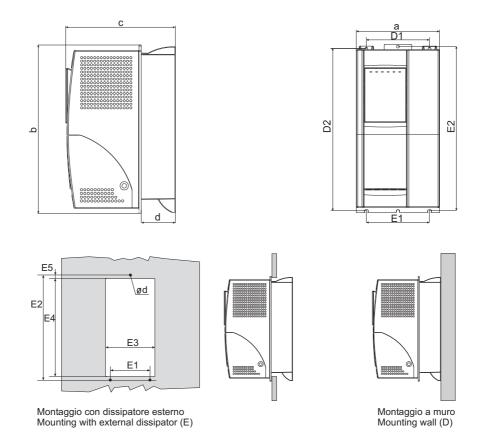


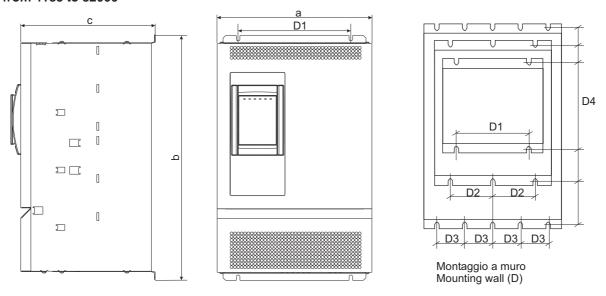
Figure 3.5.1-B: Overload Duty Cycle (Sizes 5450... 82000)

3.6 Open-Loop and Closed-Loop control section


	•									
No. 3 Programmable Analog inputs:	Analog input 1 ±10	0 V 0.5 mA max, 10 bit + sign / unipolar or bipolar (010V=default)								
	Analog input 2 ±10	V 0.5 mA max, 10 bit + sign / unipolar or bipolar (± 10 V =default)								
	Analog input 3 02	20 mA, 420mA 10 V max, 10 bit (420mA=default)								
No. 2 Programmable Analog outputs:										
	Analog output 1 = -10+10									
	Analog output 2 = -10+10	V, 10 bit, Output current (default)								
No. 8 Programmable Digital inputs:	024V / 6 mA									
	Digital input 8 = Fault reset	src (default)								
	Digital input 7 = Ext fault src (default)									
	Digital input 6 = Freq Sel 3									
	Digital input 5 = Freq Sel 2	src (default)								
	Digital input 4 = Freq Sel 1	src (default)								
	Digital input 3 = Run Rev sr	c (default)								
	Digital input 2 = Run Fwd src (default)									
	Digital input 1 = Enable src	(default)								
N 45	D: '11	(1.6.10)								
No. 4 Programmable Digital outputs:	•									
	Digital outputs 2 = freq <thr1< td=""><td></td></thr1<>									
	Digital outputs 3 = Brake co									
	Digital outputs 4 = Not in ala	arm (derault)								
	en collector type: 50V / 50n									
Dig. out. 3 / 4 > rel	ay output type: 230Vac-1A /	/ 30Vdc-1A								
Internal voltage supply:	+ 24Vdc (±10 %), 50mA	(Terminal 1)								
	+ 10Vdc (±3 %), 10mA	(Terminal 29)								
	- 10Vdc (±3 %), 10mA	(Terminal 32)								
	+ 24Vdc (±10 %), 300mA	(Terminal 9)								
No.1 Digital Encoder Input	Voltage: 5/8/	/24 V								
		2 channels. No zero.								
	Max frequency: 150kHz									
3.7 Accuracy										
Reference value	0.1 Hz (Resolution of Refer	rence preset via terminals)								
Notofolioc value	0.1 112 (1.030) 011011 01 1.0101	torico prosot via torrilliais)								

56 AGy -L

0.1 Hz (Resolution of Reference preset via interface)


3.8 Dimensions and installation guidelines

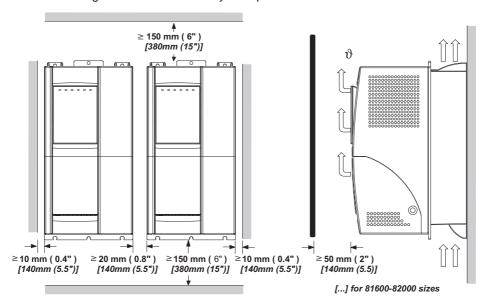
Sizes from 2040 to 3150

Dimensions: mm (inch)												
а	b	С	d	D1	D2	E1	E2	E3	E4	E5	Ød	kg (lbs)
									221			
										_		4.95 (10.9)
(0.0)	(12.0)	(1.0)	(=)	(1.0)	(11.0)	()	()	(0.1)	()	9 (0.35) M5	M5	
208	323	240	84	168	310.5	164	315	199	299.5	(3.23)		8.6 (19)
(8.2)	(12.7)	(9.5)	(3.3)	(6.6)	(12.2)	(6.5)	(12.4)	(7.8)	(11.8)			0.0 (19)
	151.5 (5.9)	151.5 306.5 (5.9) (12.0)	151.5 306.5 199.5 (5.9) (12.0) (7.8) 208 323 240	151.5 306.5 199.5 62 (5.9) (12.0) (7.8) (2.4)	a b c d D1 151.5 306.5 199.5 62 115 (5.9) (12.0) (7.8) (2.4) (4.5) 208 323 240 84 168	a b c d D1 D2 151.5 306.5 199.5 62 115 296.5 (5.9) (12.0) (7.8) (2.4) (4.5) (11.6) 208 323 240 84 168 310.5	a b c d D1 D2 E1 151.5 306.5 199.5 62 115 296.5 115 (5.9) (12.0) (7.8) (2.4) (4.5) (11.6) (4.5) 208 323 240 84 168 310.5 164	a b c d D1 D2 E1 E2 151.5 306.5 199.5 62 115 296.5 115 299.5 (5.9) (12.0) (7.8) (2.4) (4.5) (11.6) (4.5) (11.7) 208 323 240 84 168 310.5 164 315	a b c d D1 D2 E1 E2 E3 151.5 306.5 199.5 62 115 296.5 115 299.5 145.5 (5.9) (12.0) (7.8) (2.4) (4.5) (11.6) (4.5) (11.7) (5.7) 208 323 240 84 168 310.5 164 315 199	a b c d D1 D2 E1 E2 E3 E4 151.5 306.5 199.5 62 115 296.5 115 299.5 145.5 284 (5.9) (12.0) (7.8) (2.4) (4.5) (11.6) (4.5) (11.7) (5.7) (11.2) 208 323 240 84 168 310.5 164 315 199 299.5	a b c d D1 D2 E1 E2 E3 E4 E5 151.5 306.5 199.5 62 115 296.5 115 299.5 145.5 284 (5.9) (12.0) (7.8) (2.4) (4.5) (11.6) (4.5) (11.7) (5.7) (11.2) 9 208 323 240 84 168 310.5 164 315 199 299.5	a b c d D1 D2 E1 E2 E3 E4 E5 Ø d 151.5 306.5 199.5 62 115 296.5 115 299.5 145.5 284 (11.2) 9 (0.35) (0.35) M5 208 323 240 84 168 310.5 164 315 199 299.5 (0.35) M5

Sizes from 4185 to 82000

Type	Dimensions: mm (inch)						Weight		
Type	а	b	С	D1	D2	D3	D4	Ø	kg (lbs)
4185			268 (10.5)						18 (39.6)
4221	309 (12.1)	489 (19.2)	200 (10.5)	225 (8.8)			475 (18.7)		16 (39.6)
4301	309 (12.1)	409 (19.2)		223 (0.0)	-				22 (48.59)
4371			308 (12.1)			_			22.2 (48.9)
5450	376 (14.7)	564 (22.2)	300 (12.1)	_	150 (5.9)		550 (21.6)		34 (74.9)
5550	370 (14.7)	304 (22.2)				100 (0.0)		M6	34 (74.3)
6750		741 (29.2)					725 (28.5)	""	59 (130)
7900			297.5 (11.7)						75.4 (166.1)
71100	509 (20)	909 (35.8)	207.0 (11.7)	_	_	100 (3.9)	891 (35)		80.2 (176.7)
71320	000 (20)					100 (0.0)			86.5 (190.6)
81600		965 (38)	442 (17.4)				947 (37.3)		109 (240.3)
82000		303 (30)	772 (17.7)				347 (37.3)		100 (240.0)

Mounting Clearance


The Drives must be mounted in such a way that the free flow of air is ensured.

The clearance to the device must be at least 150 mm (6 inches).

A space of at least 50 mm (2 inches) must be ensured at the front.

On sizes 81600 and 82000 the top and bottom clearance must be at least 380 mm (15 inches), on front and sides must be ensured a space of at least 140 mm (5.5 inches).

Devices that generate a large amount of heat must not be mounted in the direct vicinity of the frequency inverter. Fastening screws should be re-tightened after a few days of operation.

4 - Wiring Procedure

4.1 Power Section

Terminals	Function
U1/L1, V1/L2, W1/L3	AC mains voltage (230V -15% 480V +10%)
BR1	Braking unit resistor command (braking resistor must be connected between BR1 and C)
C, D	Intermediate circuit connection (770 Vdc, 1.65 x l _n)
U2/T1, V2/T2, W2/T3	Motor connection (AC line volt 3Ph, 1.36 l _{2N})
PE2	Motor ground connection
EM (**)	Emergency module signal required to interface the drive with the EMS device (Emergency Module Supplier), max 0,22A
FEXT	(**) Logic fan control signal repeated on an external fan (*) 250V, 1A.
PE1	Ground connection

- (*) Fans will be always start when the drive is enabled. Fans will stop when the drive is disabled after a period of 300 sec. and heatsink temperature is below 60°C.
- (**) EM and FEXT terminals are available on sizes 3110 ... 5550.

Note! Use 60°C / 75°C copper conductor only.

The grounding conductor of the motor cable may conduct up to twice the value of the rated current if essere there is a ground fault at the output of the drive.

External fuses of the power section

The inverter must be fused on the AC Input side. **Use superfast semiconductor fuses only.**Connections with three-phase inductance on AC input will improve the DC link capacitors life time.

	Fuses			Fuses				
Туре	230 400 Vac, 50Hz	460 Va	c, 60Hz	230 400 Vac, 50Hz	460 Vac, 60Hz			
	Connections without three-phase re	actor on A	AC input	Connections with three-phase reactor on AC input				
2040	GRD2/20 or Z14GR20 A70P20 FWP20		GRD2/16 or Z14GR16	A70P20	FWP20			
2055	GRD2/25 or Z14GR25	A70P25	FWP25	GRD2/20 or Z14GR20	A70P20	FWP20		
2075	GRD3/35 or Z22GR40	A70P35	FWP35	GRD2/25 or Z14GR25	A70P25	FWP25		
3110	GRD3/50 or Z22GR40	A70P40	FWP40	GRD3/50 or Z22GR40	A70P35	FWP35		
3150	GRD3/50 or Z22GR50	A70P40	FWP40	GRD3/50 or Z22GR50	A70P40	FWP40		
4185				GRD3/50 or Z22GR50	A70P50	FWP50		
4221				GND 0/30 0/ 222 0/100	A701 30	1 771 30		
4301				S00C+üf1/80/80A/660V or Z22gR80	A70P80	FWP80		
4371				S00C+üf1/80/100A/660V or M00üf01/100A/660V	A70P100	FWP100		
5450				S00C+üf1/80/160A/660V or M00üf01/160A/660V	A70P175	FWP175		
5550	For these types an external reactor is r	nandatory i	f the AC	0000 tall (100) 100) 1000 to 000 to 1000 to 000 to	7 (7 01 17 0			
6750	input impedence is equal or les	ss than 1%		S1üf1/110/250A/660V or M1üf1/250A/660V	A70P300	FWP300		
7900				01411/110/230/4000V 01 W11411/230/4000V	A701 300	1 771 300		
71100								
71320				S2üf1/110/400A/660V or M2üf1/400A/660V	A70P400	FWP400		
81600								
82000				S2üf1/110/500A/660V or M2üf1/500A/660V	A70P500	FWP500		

fusibili-g

Fuse manufacturers: Type GRD..., Z14... 14 x 51 mm, S..., M..., Z22... 22 x 58 mm Jean Müller, Eltville

A70... Ferraz FWP... Bussmann

External fuses of the Power Section DC input side

Use the following fuses when a Line Regen converter is used.

Type	230 400 Vac, 50Hz	460 Va	c, 60Hz			
Туре	Fuses	Fuses				
2040	Z14GR16	A70P20-1	FWP20A14F			
2055	Z14GR20	A70P20-1	FWP20A14F			
2075	Z14GR32	A70P30-1	FWP30A14F			
3110	Z14GR40	A70P40-4	FWP40B			
3150	Z22GR63	A70P60-4	FWP60B			
4185 - 4221	S00C+/üf1/80/80A/660V	A70P80	FWP80			
4301	S00C+/üf1/80/100A/660V	A70P100	FWP100			
4371	S00C+/üf1/80/125A/660V	A70P150	FWP150			
5450	S00C+/üf1/80/160A/660V	A70P175	FWP175			
5550	S00üF1/80/200A/660V	A70P200	FWP200			
6750	S1üF1/110/250A/660V	A70P250	FWP250			
7900	S1üF1/110/315A/660V	A70P350	FWP350			
71100	S1üF1/110/400A/660V	A70P400	FWP400			
71320	C4::F4/440/E00A/CC0V/	AZODEOO	EWD500			
81600	S1üF1/110/500A/660V	A70P500	FWP500			
82000	S1üF1/110/600A/660V	A70P600	FWP600			

fusibili dc-g

Chokes / Filters

Note!

A three-phase inductance should be connected on the AC Input side in order to limit the input RMS current of the Drives. The inductance can be provided by an AC Input choke or an AC Input transformer.

	3-Phase AC Input Chokes							
Туре	Mains	Rated	Saturation	Freq.		Weight		
туре	inductance	current	current		Model	kg (lbs)		
	[mH]	[A]	[A]	[Hz]		kg (lbs)		
2040	1.63	8.7	18	50/60	LR3y-2040	2 (4.4)		
2055	1.29	11.8	24.5	50/60	LR3y-2055	2.2 (4.4)		
2075	0.89	17.4	36.5	50/60	LR3y-2075	4.9 (10.8)		
3110	0.68	22.4	46.5	50/60	LR3y-3110	5 (11)		
3150	0.51	30	61	50/60	LR3y-3150	6.2 (13.7)		
4185	0.35	41	83	50/60	LR3-022	7.8 (17.2)		
4221	0.35	41	83	50/60	LK3-022	7.0 (17.2)		
4301	0.24	58	120	50/60	LR3-030	9.5 (20.9)		
4371	0.18	71	145	50/60	LR3-037	9.5 (20.9)		
5450	0.13	102	212	50/60	LR3-055	12.5 (27.6)		
5550	0.13	102	212	50/60	LK3-055	12.5 (27.0)		
6750	0.148	173	350	50/60	LR3-090	55 (121.3)		
7900	0.148	173	350	50/60	LK3-090	55 (121.5)		
71100	0.085	297	600	50/60				
71320	0.085	297	600	50/60	LR3-160	44 (97.0)		
81600	0.085	297	600	50/60				
82000	0.085	380	710	50/60	LR3-200	54 (119)		

EMI filters,	EMI filters, class (*)					
Model	Weight kg (lbs)					
EMI FFP 480-24	1.4 (3.1)					
EMI FFP 480-24	1.4 (3.1)					
EMI FFP 480-24	1.4 (3.1)					
EMI FFP 480-30	1.6 (3.5)					
EMI FFP 480-40	2.3 (5.1)					
EMI 480-45	1.3 [2.9]					
EMI 480-45	1.3 [2.9]					
EMI 480-70	2.6 [5.7]					
EMI 480-70	2.6 [5.7]					
EMI 480-100	2.6 [5.7]					
EMI 480-100	2.6 [5.7]					
EMI 480-150	4.4 [9.7]					
EMI 480-180	4.4 [9.7]					
EMI 520-280	28 (61.7)					
EMI 520-280	28 (61.7)					
EMI 520-450	45 (99.2)					
EMI 520-450	45 (99.2)					

EMI filters,	class (**)	
Model	Weight kg (lbs)	
-	-	
EMI-C 480-25	0.96 (2.1)	
EMI-C 480-25	0.96 (2.1)	
EMI-C 480-25	0.96 (2.1)	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
	: d++ 6:14:	

indutt-filtri-g

^{(*):} EN61800-3, 1st environment restricted distribution.

^(**) Class A, for drive/motor cable 5 meters max length.

Braking Resistors

The braking resistors can be subject to unforeseen overloads due to possible failures.

The resistors have to be protected using thermal protection devices. Such devices do not have to interrupt the circuit where the resistor is inserted but their auxiliary contact must interrupt the power supply of the drive power section. In case the resistor foresees the precence of a protection contact, such contact has to be used together with the one belonging to the thermal protection device.

Recommended resistors for use with internal braking unit:

Туре	P _{NBR}	R_{BR}	E _{BR}	Resistor	Resistor Weight		D	imensions : mr	ı (inch)	
	[kW]	[Ohm]	[kJ]	Туре	kg (lbs)	length	heigth	depth	fix1 f	ix 2
2040	0.6	100	22	MRI/T600 100R	1.5 (3.3)	320 (12.6)	120 (4.7)	100 (3.9) 3	60 (14.2)	-
2055 2075	0.9	68	33	MRI/T900 68R	2.7 (6.0)	320 (12.6)	160 (6.3)	120 (4.7) 3	80 (15.0)	-
3110	1.3	49	48	MRI/T1300 49R	3.7 (8.2)	320 (12.6)	320 (12.6)	120 (4.7) 3	80 (15.0)	-
3150	2.1	28	90	BR T2K0-28R	6.2 (13.7)	625 (24.6)	100 (3.9)	250 (9.8) 6	05 (23.8) 40	(1.6)
4185 4221	4	15.4	180	BR T4K0-15R4	7.0 (15.4)	625 (24.6)	100 (3.9)	250 (9.8) 6	05 (23.8) 40	(1.6)
4301 4371	4	11.6	180	BR T4K0-11R6	7.0 (15.4)	625 (24.6)	100 (3.9)	250 (9.8) 6	05 (23.8) 40	(1.6)
5450 5550	8	7.7	360	BR T8K0-7R7	11.5 (25.)	625 (24.6)	160 (6.3)	250 (9.8) 6	05 (23.8) 60	(2.4)

Parameters description:

Nominal power of the braking resistor

Braking resistor value

P_{NBR} R_{BR} E_{BR} Max surge energy which can be dissipated by the resistor

4.2 Cooling fans

Szes 2040 ... 5550

No connection is required, the internal fans are power supplied by an internal circuit.

Sizes 6750 ... 82000

Power supply for these fans have to be provided as follow:

- 6750: 0.8A@115V/60Hz, 0.45A@230V / 50Hz
- 7900 ... 71320: <u>1.2A@115V/60Hz</u>, <u>0.65A@230V</u> / 50Hz
- 81600, 82000: <u>1.65A@115V/60Hz</u>, <u>0.70A@230V</u> / 50Hz

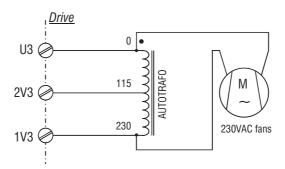


Figure 4.2.1: UL Type Fans Connections on 7900 ... 71320

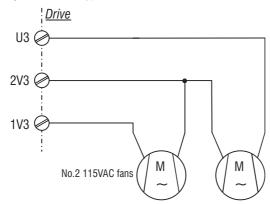


Figure 4.2.2: UL Type Fans Connections on 6750, 81600, 82000

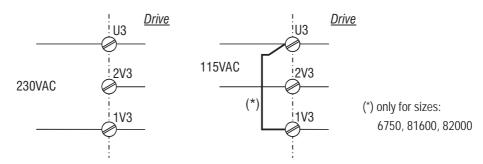
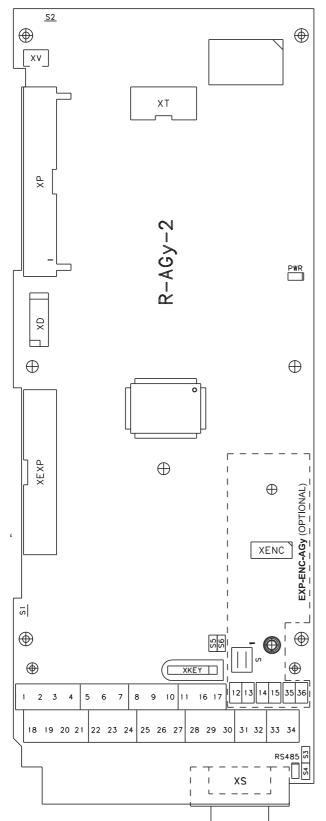



Figure 4.2.3: Example for External Connection

Note!

An internal fuse (2.5A 250VAC slo-blo) for $7900 \dots 71320 \,$ sizes is provided. On 6750, 81600 and 82000 sizes the fuse must be mounted externally.

4.3 Regulation Section

LED	Color	Function
PWR	green	LED turns on when the voltage + 5V is present
RS 485	yellow	LED turns on when Serial interface is supplied

Connector	No. of pins	Function
XV	2	Reserved (Fans control)
XT	XT 10 KGB-1 and/or KGB-LCD-A keypad connecto	
XENC	10	EXP-ENC-AGY optional board connection (for encoder feedback)
XS	9	9-pole SUB-D connector of RS485 serial line
XKEY	5+1	QUIX-PRG key connection
XP	40	Reserved (power board connection)
XEXP	34	Reserved (expansion boards connection)
XD	10	Reserved (FW download connection)

Jumper	Default	Function
S 1	ON	Jumper to disconnect 0V24 (regulation section) from ground. ON = 0V24 connected to ground OFF = 0V24 disconnected from ground
S2	ON	Jumper to disconnect 0V (regulation section) from ground. ON = 0V connected to ground OFF = 0V disconnected from ground
S5 S6	ON	Selection of the internal/external supply of the RS485 serial interface ON = Serial interface supplied from the regulation section OFF = Serial interface supplied from external source and galvanic insulation from the regulation card
S3 S4	ON	Terminating resistor for the serial interface RS485: OFF = No termination resistor ON = Termination resistor IN

Switch	Default	Switch function of EXP-ENC-AGy board
S-1	OFF	OFF = HTL output logic encoder level (+24V) ON = TTL output logic encoder level (+5V)
S-2	OFF	OFF = HTL output logic encoder level (+24V) ON = TTL output logic encoder level (+5V)

Tern	n. Designation	Function
1	Digital Output 4-NO	
2	Digital Output 4-COM	Programmable digital relay output, default: [2] Drive OK (max 1A 30Vdc/250Vac)
3	Digital Output 4-NC	
4	Digital Input 8	Programmable digital input - Default: Fault Reset src
5	Digital Input 7	Programmable digital input - Default: Ext fault src
6	Digital Input 6	Programmable digital input - Default: Freq Sel 3 src
7	Digital Input 5	Programmable digital input - Default: Freq Sel 2 src
8	COM-IN Digital Inputs	Supply reference for Digital inputs (max 6mA @ +24V)
9	+ 24V OUT	+ 24 V potential voltage reference (max 300mA)
10	0 V 24 - GND Dig. Inputs	0 V 24 reference for Digital inputs
11	0 V 24 - GND Dig. Inputs	0 V 24 reference for Digital inputs
16	Digital Output 1	Programmable digital output - Default: [51] Contactor
17	Digital Output 2	Programmable digital output - Default: [32] Freq <thr1< td=""></thr1<>

Term	. Designation	Function
18	Digital Output 3 - NO	
19	Digital Output 3 - COM	Programmable digital relay output
		Default: [54]Brake cont, (max 1A 30Vdc/250Vac)
20	Digital Output 3 - NC	
21	GROUND REF	Ground shield cable reference
22	Digital Input 1	Programmable digital input - Default: Enable src
23	Digital Input 2	Programmable digital input- Default: Run Fwd src
24	Digital Input 3	Programmable digital input - Default: Run Rev src
25	Digital Input 4	Programmable digital input - Default: Freq sel 1 src
26	Analog Output 1	Programmable analog output - Default: [0] Output freq, (±10V / max 5mA)
27	Analog Input 2	Programmable VOLTAGE analog input - Default: n.a., (±10V / max 0,5mA)
28	Analog Input 3	Programmable CURRENT analog input - Default: n.a., (max 20mA)
29	+10V OUT	+ 10 V potential voltage reference, (max 10mA)
30	Analog Input 1	Programmable VOLTAGE analog input - Default: n.a. ,(±10V / max 0,5mA)
31	0 V 10 - GND	0 V 10 reference for analog inputs/outputs
32	-10V OUT	- 10 V potential voltage reference, (max 10mA)
33	Analog Output 2	Programmable analog output - Default: [2] Output curr, (±10V / max 5mA)
34	COM Digital outputs	Common reference for Digital outputs (open-collector)

n.a. = not assigned

 \pm 24Vdc voltage, which is used to externally supply the regulation card has to be stabilized and with a maximum \pm 10% tolerance. The maximum absorption is 1A.

It is not suitable to power supply the regulation card only through a unique rectifier and capacitive filter.

ENC-EXP-AGy card

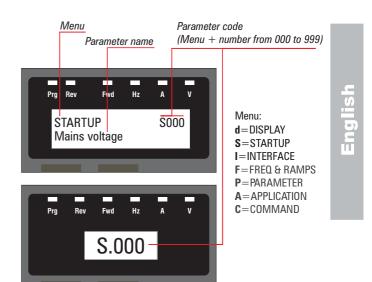
The EXP-ENC-AGy card allows the connection of a digital encoder TTL (+5V) or HTL (+24V) Default setting = HTL (+24V).

See chapter 8 - Encoder Interface - for further information.

5 - Drive Keypad Operation

In this chapter the parameters management is described, by using the drive keypad.

5.1 Keypad


Changes made to parameter have immediate effect on drive operation, but are not automatically stored in permanent memory. An explicit command is required to permanently store the parameters: **C.000 Save parameters**".

KBG-1 (standard)

KBG-LCD-.. (Optional)

Prg Scroll menù: Allows navigation thruogh the drive main menu (d.xxx, S.xxx, I.xxx, F.xxx, P.xxx, A.xxx and

C.xxx). Also used to exit the editing mode of a parameter without appling the changes.

E Enter key: Used to enter the editing mode of the selected parameter or to confirm the value.

▲ UP key: Used to scroll up through parameters or to increase numeric values while in editing mode; it can

also be used to increase motorpotentiometer reference value, when **F.000 Motorpot ref** parameter

is displayed (F, FREQ RAMP menu).

▼ DOWN key: Used to scroll down through parameters or to decrease numeric values while in editing mode; it can

also be used to decrease motorpotentiometer reference values, when F.000 Motorpot ref parameter

is displayed (F, FREQ RAMP menu).

I Start key: Used to **START** the drive via keypad; requirements:

+24V between 22 & 8 terminals (Enable)

+24 V between 23 & 8 terminals (Run Fwd) or + 24 V between 24 & 8 terminals (Run Rev)

P.000 Cmd source sel = [1] CtlWrd & kpd parameter setting

O Stop key: Used to STOP the drive via keypad;

Keypad LED's meaning:

PRG (Yellow Led): flashes if the parameters have not been permanently saved to memory.

REV (Green Led): reverse running (*) **Fwd** (Green Led): forward running (*)

Hz, A, V(Red Leds): Indicates the unit of measurement of the parameter currently displayed (**).

Note: (*) Green LEDs blinking denote the action of the motor stall prevention.

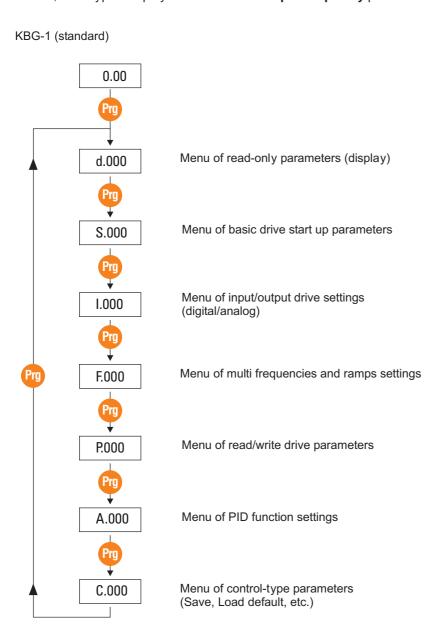
(**) Red LEDs blinking denote an active alarm condition.

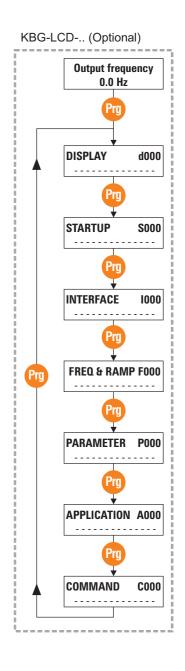
5.2 Language selection

Nota! Available on optional keypad KBG-LCD-... only.

- 1 Switch-on the drive
- 2 Press the Prg key for about 5 sec., the display will show:

Drv 03.03.00.00 Keypad V3.000

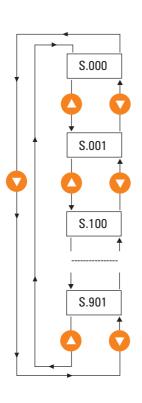

3 - Press the ▼ the display will show:

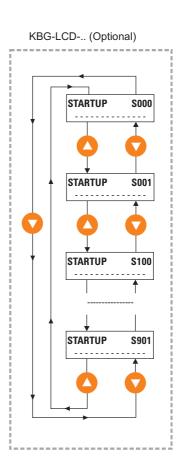

Language: English

- **4** To select a new language, press ▲ or
- 5 Press the E key to confirm.

5.3 Moving through the drive main menu

Soon after, the keypad display will show **d.000 Output frequency** parameter of DISPLAY menu.

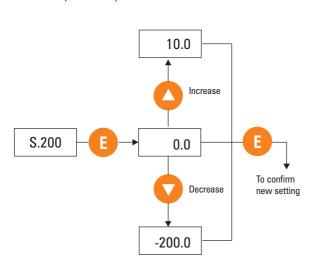


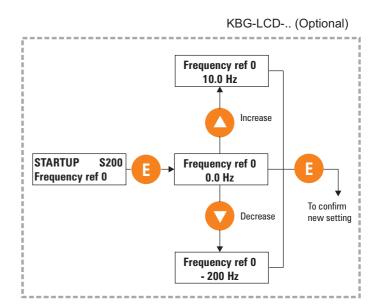


5.4 Scrolling through the drive parameters

STARTUP menu example:

KBG-1 (standard)





5.5 Parameters modification

Example: how to change a frequency reference (STARTUP menù).

Note!

Same procedure is also valid to Enable/Disable a function (ex.: **S.301 Auto boost en**) or program the drive I/ Os (i.e.: **I.100 Dig output 1 cfg**, etc. ...).

6 - Commissioning suggestions

Before changing the parameter settings make sure that the starting values are default values.

Change the parameters one at the time; if the change on any parameter is not effective, restore the parameter initial value before changing another one.

• In order to avoid problems linked to running comfort, it is advisable to perform a preliminary control of the motor parameters.

Check in the STARTUP menu that the value set in the following parameters corresponds to the motor nameplate data:

S.100 Base voltage Inverter maximum output voltage (Vrms).

S.101 Base frequency Motor base frequency (Hz).
S.150 Motor rated curr Motor rated current (Arms).
S.151 Motor pole pairs Number of motor polepairs.

S.152 Motor power fact (cos phi) Motor input power factor with rated current and voltage.

In order to avoid too high settings of the acceleration and deceleration values (jerk), make sure that the slowing-down distances correspond to those listed in the table:

Suggested slowing-down distances

Plant rated speed	(m/s)	8.0	1.0	1.2	1.4	1.6	1.8	2
Suggested slowing-down distance	(mm)	1000	1300	1700	2000	2300	2 600 :	3000

tab 060-g

Such distances grant a high running comfort with the factory set jerk values.

 The default speed levels can be selected on the terminals 25, 7 and 6. It is advisable to use the frequencies as follows:

S.200 Frequency ref 0 Slow speed: it is the floor reaching speed (frequency)

S.201 Frequency ref 1 High speed: it is the rated speed (frequency) required by the motor for that specific

plant.

Other speeds (maintenance, rephasing procedure etc.) can be selected as per table 7.2.

• In the open loop plants (without encoder), the boost can be increased if the lift car tends to rotate in the opposite direction during the starting phase or if it can not start in spite the running speed has been set **\$.300 Manual boost**, default = 3). The boost should be gradually increased by 1% at the time. Too high values cause the intervention of the current limit alarm.

7 - Default lift configuration

Lift commands are part of a dedicated control word. Each command is assigned to a physical digital input terminal. All the main commands are given from the DI on the standard regulation board (see table 7.1).

Similarly, lift digital outputs are configured to perform the most common functions needed to realize a standard application, such as run and brake contactor control logic.

In AGy -L drives, commands are always coming from Lift Control Word. It is possible to issue the Run Fwd or Run Rev commands from keypad, in order to simplify the startup procedure.

Frequency references are coming from the multi-speed selector, which is the required setting for most applications. However, it is possible to use other sources for the frequency reference, such as analog inputs or Motopotentiometer. Ramps are initialized to a standard set of jerks and acceleration/deceleration that should meet the requirements of most low speed applications. It is possible, though not recommended, to disable the S-shape and use linear profiles (F.250 = 0). In that case the jerk parameters will have no effect.

7.1 Command Logic

In the standard version, drive commands may come from several different sources (keypad, terminals, serial line etc.). In the Lift version the parameter defining the source of the commands can only assume the following values: P.000 Sel comandi src= "[0]CtrlWordOnly"

Command assignment

Duive servered	Course money story	Deafu	Descible setting	IPA	
Drive command	Source parameter Setting Possible setting Deafult setting Possible setting Possibl		Possible setting	IPA	
Enable src	1.000	[2] DI 1	22	[0] False	100
				[1] True	
				[2] DI 1	
				[3] DI 2	
				[4] DI 3	
				[5] DI 4	
				[6] DI 5	
				[7] DI 6	
				[8] DI 7	
				[9] DI 8	
				[10] DI Exp 1	
				[11] DI Exp 2	
				[12] DI Exp 3	
				[13] DI Exp 4	
				[14] AND 1	
				[15] AND 2	
				[16] AND 3	
				[17] OR 1	
				[18] OR 2	
				[19] OR 3	
				[20] NOT 1	
				[21] NOT 2	
				[22] NOT 3	
				[23] NOT 4	
				[24] FrqSel match	
				[25] Short Floor flg	
Run Fwd src	1.001	[3] DI 2	23	See list of I.000	101
Run Rev src	1.002	[4] DI 3	24	See list of I.000	102
Freq Sel 1 src	1.003	[5] DI 4	25	See list of I.000	103
Freq Sel 2 src	1.004	[6] DI 5	7	See list of I.000	104
Freq Sel 3 src	1.005	[7] DI 6	6	See list of I.000	105
Freq Sel 4 src	1.006	[0] False		See list of I.000	106
Ramp Sel 1 src	1.007	[25] Short Floor Flg		See list of I.000	107
Ramp Sel 2 src	1.008	[0] False		See list of I.000	108
Ext fault src	1.009	[8] DI 7	5	See list of I.000	109
Alarm Reset	I.010	[9] DI 8	4	See list of I.000	110
Bak pwr act src	I.011	[0] False		See list of I.000	111
		•		_	

Table 7.1 - Command assignment

Each command may come from any of the drive digital input terminals (either standard or expanded), or can be a logical combination of terminal inputs, obtained by using the drive internal programmable area

It is anyway possible to assign commands different from the default ones:

For example, if we want the **Enable** command to come from the digital input 3 of the drive (terminal 24 on the regulation board), we have to set parameter **I.000 Enable src** to the value "[4] DI 3".

Note:

If the source of a command is specified as an expanded DI, and the I/O expansion board is not mounted, the command will always be inactive (FALSE).

A brief description of each command follows.

Enable src The **Enable** command must always be present, in order to activate the inverter output bridge. If the

Enable input is not present, or the Enable signal is removed at any time during the Lift sequence, the output stage of the drive is disabled, and the Run contactor is open, regardless of the status of all the

other inputs.

Run Fwd src (Upward command)

Closing the input 23, the upward Lift sequence is started (see Figure 7.1).

Run Rev src (Downward command)

Closing the input 24, the downward Lift sequence is started (see Figure 7.1).

Note: The direction of the motion can also be reversed by setting a negative frequency reference. With a negative

frequency reference, the Run Fwd src command will cause a downward motion, while a Run Rev src

command will cause the cabin to move upward.

Note: The lifting sequence will not start if both Run Fwd src and Run Rev src commands are activated at the

same time.

Freq Sel 1 ... 4 src (Selection of the speed reference)

The binary code defined by the status of these signals selects the frequency reference (speed) for the ramp generator (see Fig.7.2), according to the following table:

Freq Sel 4	Freq Sel 3	Freq Sel 2	Freq Sel 1		Active frequency
Terminal XX	Terminal 6	Terminal 7	Terminal 25	Code	reference
0	0	0	0	0	S.200 Frequency ref 0
0	0	0	1	1	S.201 Frequency ref 1
0	0	1	0	2	S.202 Frequency ref 2
0	0	1	1	3	S.203 Frequency ref 3
0	1	0	0	4	S.204 Frequency ref 4
0	1	0	1	5	S.205 Frequency ref 5
0	1	1	0	6	S.206 Frequency ref 6
0	1	1	1	7	S.207 Frequency ref 7
1	0	0	0	8	F.108 Frequency ref 8
1	0	0	1	9	F.109 Frequency ref 9
1	0	1	0	10	F.110 Frequency ref 10
1	0	1	1	11	F.111 Frequency ref 11
1	1	0	0	12	F.112 Frequency ref 12
1	1	0	1	13	F.113 Frequency ref 13
1	1	1	0	14	F.114 Frequency ref 14
1	1	1	1	15	F.115 Frequency ref 15 (Emergency run freq)

tab 020-g

Table 7.2 - Multi-frequencies selection

Note:

The last multi-frequency has also a special meaning when using the backup power supply. If the drive is being fed by the backup power supply, the frequency reference is clamped to the value defined by the parameter **F.115**.

If the backup power supply is not used, **F.115** can be used as one of the multi-frequencies and is selected by setting to TRUE all the selectors (**Freq Sel 1** to **Freq Sel 4**).

Ramp Sel 1 ... 2 The binary code defined by the status of these signals selects the set of parameters for ramp profile

(jerks, acceleration and deceleration). By default, the first ramp selector is commanded by the **ShortFloorFI** (see chapter 7.3), while the second ramp selector is fixed to FALSE. Therefore, the first ramp set is normally active, and the drive will automatically switch to the second ramp set whenever

a short floor is detected (see Fig.7.5).

External fault Activation of this command, will cause the drive to trip with an external fault alarm. If the alarm occurs

while a lift sequence is in process, the sequence is immediately aborted and the Run contactor is

open. In order to restore drive operation, an explicit Alarm Reset command is needed.

Fault reset src (Alarm reset) Activation of this command will restore drive operation after a trip.

Bak pwr act src This command tells to the drive that a backup power supply is being used. See chapter 9 for a

detailed description.

In order to simplify the drive startup, it is possible to issue **Run Fwd src** or **Run Rev src** commands from the "**I-O**" keys of the drive keypad.

Typical example:

The user wants to execute tuning of the motor resistance, but does not want to issue the start sequence from the external PLC. In this case, it is possible to program the drive as follows:

- Set parameter P.000 Cmd source sel= "[1] CtlWrd & kpd"
- Set parameter I.000 Enable src = "[1] True"
- Set parameter I.001 RunFwd src = "[1] True"
- Issue the command for tuning, by setting **C.100 Measure stator R** = **[1]**; the drive keypad will show the message "tune".
- Press the "I" key; the keypad will show the message "run", meaning that the tuning procedure is in progress. Wait until the procedure ends, and the keypad will show the message "done".

Nota:

The motor output contacts must be closed during the tuning procedure, in order to allow current to flow into the motor. Either hard-wire the RUN contactor closed during tuning procedure, or connect the dedicated output of the drive to the RUN contactor.

- Once the tuning procedure is finished, restore the original settings for the parameters above, following the order:

I.001 Run Fwd src = "[3] DI 2"
I.000 Enable src = "[2] DI 1"
P.000 Cmd source sel= "[0] CtrlWordOnly"

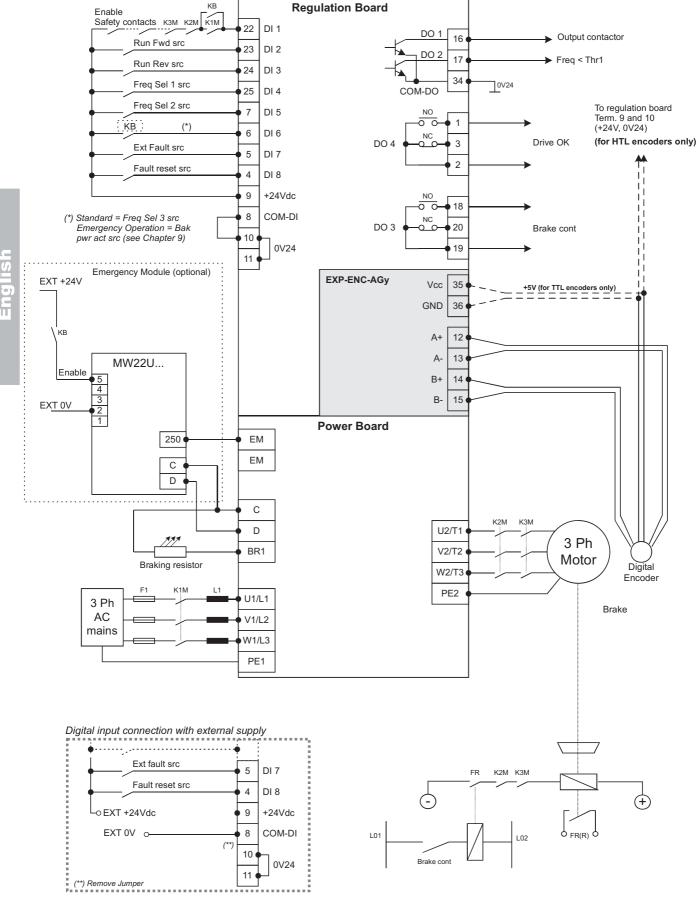


Fig.7.1 - Lift standard wiring and connection of Emergency Module MW22U (optional)

7.2 Lift Sequence

Timing diagrams of the lift sequence are reported in Fig. 7.2 and Fig. 7.3.

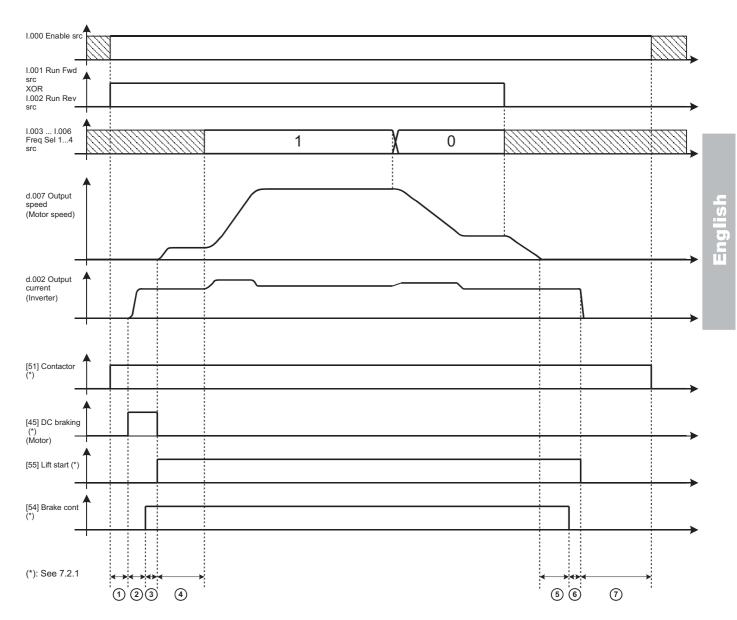


Fig. 7.2 - Standard lift sequence

1.	S.250 Cont close delay	(Default: 0,20)
	•	
2.	S.251 Magnet time	(Default : 1)
3.	S.252 Brake open delay	(Default : 0,20)
4.	S.253 Smooth start dly	(Default : 0)
5.	S.254 DCBrake stp time	(Default : 1)
6.	S.255 Brake close dly	(Default : 0,20)
7.	S.256 Cont open delay	(Default: 0,20)

Note:

Lift sequence will not start if there is no current flowing on any of the motor windings during the initial injection of DC-current. The minimum amount of current necessary to release the mechanical brake and initiate the lift sequence is defined by **A.087 Current pres thr**. By setting the parameter to "0", current check is disabled, and the lift sequence will start even if the motor is disconnected from the drive.



Fig. 7.3 – Detailed stopping sequence

- a) S.260 Lift Stop Mode = [0] DC brake at stop (Default)
- b) S.260 Lift Stop Mode = [1] Normal stop

7.2.1 Lift-dedicated digital output functions

Several specific functions can be programmed on the drive digital outputs, in order to check the correctness of the lift sequence and to improve the interaction with the external sequencer. Here follows a list of the functions that can be useful in lift applications.

DO Programming code	Function description
[0] Drive ready	TRUE when the drive is ready to accept a valid RUN command. Meaning that the drive is not in alarm, the dc-link pre-charge is completed and the safe-start interlock logic is cleared.
[1] Alarm state	TRUE when the drive is in alarm status. Alarm reset is needed to restore operation
[2] Not in alarm	TRUE when the drive is not in Alarm status.
[3] Motor run	TRUE when the inverter output bridge is enabled and operating.
[4] Motor stop	TRUE when the inverter output bridge is not operating (all six switches are open).
[5] Rev rotation	TRUE when the motor is rotating counter-clockwise.
[31] Freq > thr1	TRUE when the motor speed (measured or estimated) is above the threshold defined by parameters P.440 and P.441.
[32] Freq < thr1	TRUE when the motor speed (measured or estimated) is below the threshold defined by parameters P.440 and P.441. This function is normally used to detect zero speed (see sequence in Fig.7.2). This signal is available as default on terminal 17, Digital output 2 .
[45] DC braking	TRUE when DC injection is in progress.
[51] Contactor	TRUE when the Run contactor has to be closed, either for upward or downward motion.

This signal is available as default on terminal 16, **Digital output 1**. [52] Contactor UP

TRUE when the Run contactor for upward motion has to be closed.

TRUE when the Run contactor for downward motion has to be closed.

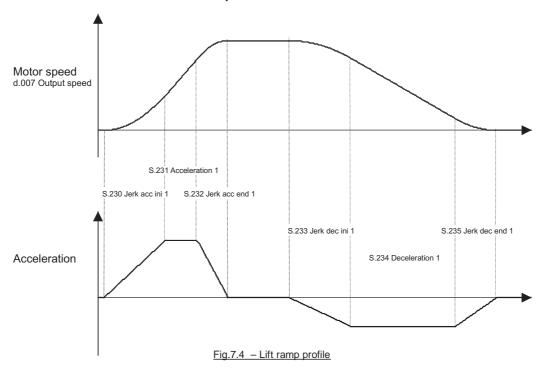
[54] Brake cont TRUE when the mechanical brake has to be released.

[55] Lift start TRUE when the inverter output bridge is operating and no DC injection is being operated.

7.2.2 Speed indication

[53] Contactor DOWN

At power-on the drive keypad shows the speed of the lift car (parameter d.007), expressed in mm/s. Likewise, all the variables related to the speed of the motor (d.008, d.302) are expressed in mm/s. The conversion between electrical Hz and car speed is automatically performed by the drive, as explained in the following chapter. The conversion ratio can also be overwritten by the user, by setting parameter P.600.


The parameter to be shown at power-on can be configured by setting the parameter P.580.

7.3 Ramp Function

Four independent jerks are available for each profile, together with linear acceleration and deceleration times. All profile parameters are expressed in terms of car linear quantities. The equivalence between car speed v(m/s) and inverter output frequency f(Hz) is automatically performed by the drive, based on the value of the following parameters:

- S.101 Base frequency (Hz)
- S.180 Car max speed (m/s)

The ramp profile is shown in Fig.6. Profile number 1 has been used as an example, but the same applies to all the four available profiles. The increase or decrease of the jerk values causes the increase or decrease of the running comfort.

7.3.1 Space calculation and acceleration / deceleration ramps settings

The space covered by the lift car during acceleration and deceleration ramps can be calculated off-line by the drive, by executing the command: **C.060 Calculate space**. The results of the calculation can be monitored into the parameters:

d.500 Lift space space covered by the lift car (expressed in meters) when accelerating from zero to the

maximum speed (defined by \$.180) and then immediately decelerating back to zero(one

floor travel)

d.501 Lift accel space space covered by the lift car (expressed in meters) when accelerating from zero to the

maximum speed (defined by \$.180).

pace covered by the lift car (expressed in meters) when decelerating from the maximum d.502 Lift decel space

speed (defined by \$.180) to zero.

Knowing the space needed to accelerate and decelerate the lift car with the ramp set in use, is useful to determine whether the ramps are compatible with the position of the floor sensors before actually starting the drive. For example, if the

deceleration ramp is too slow, as compared to the re-aligning distance, the lift car could stop after the floor level.

If acceleration and/or deceleration ramps are too fast, the drive may reach the output current limit. In this case, the drive will automatically clamp the current to a safe value, with a resulting loss of output torque. If the drive remains in limit condition for the time specified by the parameter **P.181 - Clamp alm HIdOff** (default setting is 1 second), an alarm will be issued ("LF - Limiter fault") and the lift sequence will be aborted. It is strongly recommended not to operate the drive in current limit, since the desired speed profile cannot be achieved in that case, resulting in undesired oscillations. If the drive reaches the current limit during the acceleration or deceleration phases, it is advised to slow down the ramps, until the limit condition is avoided.

7.3.2 Short Floor Function

Sometimes, the space between adjacent floors is not constant, and there is one floor that may be nearer to the next one. That situation is normally referred as "**Short Floor**". It could happen that due to the reduced distance, the lift is required to decelerate to the leveling speed, when the acceleration ramp to normal speed is still in progress. This will lengthen the approaching phase, unless countermeasures are taken.

The drive is able to detect a Short Floor, by looking at the sequence.

The flag "ShortFloorFl" is set if the deceleration command is given during the acceleration phase.

I.007 Ramp sel 1 src = "[25] ShortFloorFl"

The flag is reset when the stop command is given, or when the sequence is aborted.

"ShortFloorFI" is default used to control the short floor, using the second set of ramps.

The regulation of the parameters from **S.240** to **S. 245** allows to define the area to be covered before reaching the floor. In case of short floor, if the lift overcomes the floor it means that the lift speed was too high and it is therefore necessary to increase the jerk values (parameters **S.242**, **S.243**, **S.244**). If the plant works for a too long time with a low speed before reaching the floor, the jerk values have to be decreased (parameters **S.242**, **S.243**, **S.244**).

A typical short floor sequence is reported in Fig. 7.5.

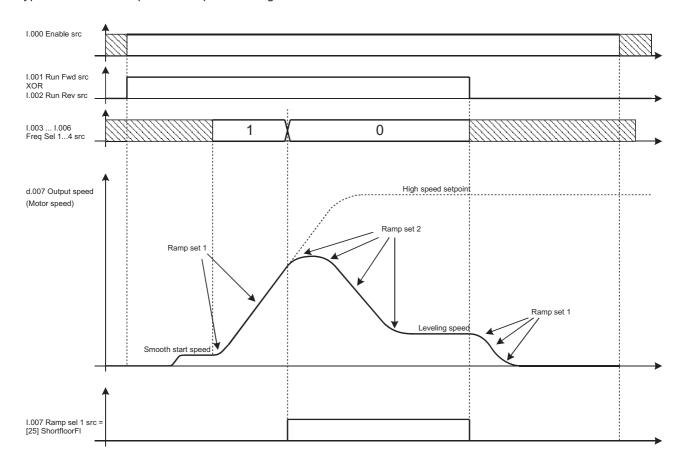


Fig. 7.5 - Short floor sequence

Ramp references: 1 S.240 Jerk acc ini 2 4 S.243 Jerk dec ini 2

2 S.241 Acceleration 2 5 S.244 Deceleration 2

3 S.242 Jerk acc end 2 6 S.245 Jerk dec end 2

7.4 Startup Menu

Lift version has parameters that are organized with access levels, as follows:

Access level	Accessible parameters
1	- Basic display parameters
	- Command for save parameters
	- P.998
2 (Default)	- All level 1 parameters
	- Startup parameters
	- All commands
3	All parameters

tab 050-g

The access level is set by the parameter P.998 Param access lev.

Note! When using E@syDrives configurator, all parameters are accessible, regardless of what is specified by parameter P.998.

In order to make drive installation easy, all the parameters needed for standard setup are gathered in the **STARTUP** menu. This menu consists of links to parameters present in different drive menus. Therefore, making a change to any of the parameters in Startup, is equivalent to make the same change to the linked parameter in another menu.

The list of parameters in Startup menu of the lift version follows:

Note! (*) = Size dependent

(ALIAS): On STARTUP menu only. Parameter code of same parameter on other menu .

Code	Display (Description)		Def.	Min.	Max
S.000	Mains voltage	(linked to P.020)	380	230	480
	Nominal voltage (Vrms) of	the AC input mains.			
S.001	Mains frequency	(linked to P.021)	50	50	60
	Nominal frequency (Hz) of	the AC input mains.			
S.100	Base voltage	(linked to P.061)	380	50	528
	Maximum inverter output v	voltage (Vrms). It should be set to motor rated voltage, as sh	own on the namep	late.	
S.101	Base frequency	(linked to P.062)	50	25	500
	Motor base frequency (Hz)	. It is the frequency at which the output voltage reaches the mo	otor rated (data on r	motor nar	neplate
S.150	Motor rated curr	(linked to P.040)	(*)	(*)	(*)
	Motor rated current (Arms)	It should be set according to motor nameplate.			
S.151	Motor pole pairs	(linked to P.041)	2	1	60
	Number of pole pairs of the	e motor (data on motor nameplate).			
S.152	Motor power fact	(linked to P.042)	(*)	(*)	(*)
	Motor input power factor a	t rated current and rated voltage. It should be set according	to nameplate.		
		(II: 1 14 D 040)	(+)	(+)	(*)
S.153	Motor stator R	(linked to P.043)	(*)	(*)	(*)

slip compensation functions. It should be set to half of the resistance measured between two of the motor input terminals, with the third terminal open. If unknown, it can be automatically measured by the autotuning command (see S.170).

S.170 Measure stator R (linked to C.100) **0.50 0.01 5.00**

The execution of this command allows the user to measure the equivalent stator resistance of the motor in use. After the command is issued, it is necessary to initiate a standard run sequence, by giving enable and start commands. The inverter will close the run contactor, but will not release the brake, allowing for current to flow in the windings. After the procedure is successfully completed, the value of S.153 is automatically updated.

	Display (Description)		Def.	Min.	Max
S.180	Car max speed	(linked to A.090)	0.50	0.01	5.00
	Speed of the lift car (m/s) who	en the inverter outputs the rated frequency.			
S.200	Frequency ref 0	(linked to F.100)	10.0	-F.02	0 F.020
	See description of S.207.				
S.201	Frequency ref 1 See description of S.207.	(linked to F.101)	50.0	-F.02	0 F.020
S.202	Frequency ref 2	(linked to F.102)			
S.203	Frequency ref 3	(linked to F.103)			
S.204	Frequency ref 4	(linked to F.104)			
S.205	Frequency ref 5	(linked to F.105)			
S.206	Frequency ref 6	(linked to F.106)			
S.207	Frequency ref 7	(linked to F.107)	0.0	-F.02	0 F.020
		If the inverter. The selection of any of the above reference though only 8 references are present in the startup menu, it senu F.			
S.220	Smooth start frq	(linked to F.116)	2.0	-F.02	0 F.020
	Frequency reference (Hz) use	ed during the smooth start procedure.			
S.225	Ramp factor 1	(linked to A.091)	1.00	0.01	2.50
	use a common extension fact	are defined by the parameters described below. However, for to speed-up or slow down the ramps. For example, if S.2 ramps (accels, decels and jerks) are halved, resulting in slo	225 is set to 0.5, a		
S.226	Ramp factor 2	(linked to A.092)		0.01	
		(11111001071.002)	1.00	0.01	2.50
	Same as S.225, but it applies	to the ramp sets 2 and 4.	1.00	0.01	2.50
S.230	Same as S.225, but it applies Jerk acc ini 1		0.50		2.50
S.230	Jerk acc ini 1	to the ramp sets 2 and 4.	0.50	0.01	10.00
	Jerk acc ini 1 Jerk (m/s³) applied at the beg	to the ramp sets 2 and 4. (linked to F.251)	0.50	0.01	10.00
	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation).	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the (linked to F.201)	0.50 one used by defau	0.01 ult, durin	10.00 g normal
S.231	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation). Acceleration 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the (linked to F.201)	0.50 one used by defau	0.01 ult, durin 0.01	10.00 g normal
S.231	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the clinked to F.201) n ramp set 1.	0.50 one used by defau 0.60	0.01 ult, durin 0.01	10.00 g normal 5.00
S.231 S.232	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the linked to F.201) n ramp set 1. (linked to F.252)	0.50 one used by defau 0.60	0.01 ult, durin 0.01	10.00 g normal 5.00
S.231 S.232	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1 Jerk (m/s³) applied at the end Jerk dec ini 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the clinked to F.201) n ramp set 1. (linked to F.252) of an acceleration with ramp set 1.	0.50 one used by defau 0.60 1.40	0.01 ult, durin 0.01	10.00 g normal 5.00
S.231 S.232 S.233	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1 Jerk (m/s³) applied at the end Jerk dec ini 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the clinked to F.201) n ramp set 1. (linked to F.252) of an acceleration with ramp set 1. (linked to F.253) inning of a deceleration with ramp set 1. (linked to F.202)	0.50 one used by defau 0.60 1.40	0.01 ult, durin 0.01	10.00 g normal 5.00
S.231 S.232 S.233	Jerk acc ini 1 Jerk (m/s³) applied at the beg operation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1 Jerk (m/s³) applied at the end Jerk (m/s³) applied at the beg Deceleration 1 Linear deceleration (m/s²) with Jerk (m/s³) applied at the beg Deceleration 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the clinked to F.201) n ramp set 1. (linked to F.252) of an acceleration with ramp set 1. (linked to F.253) inning of a deceleration with ramp set 1. (linked to F.202) n ramp set 1.	0.50 one used by defau 0.60 1.40 0.60	0.01 ult, durin 0.01 0.01 0.01	10.00 g normal 5.00 10.00 10.00
S.231 S.232 S.233	Jerk acc ini 1 Jerk (m/s³) applied at the begroperation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1 Jerk (m/s³) applied at the end 1 Jerk (m/s³) applied at the begroperation 1 Linear deceleration (m/s²) with Jerk dec end 1	to the ramp sets 2 and 4. (linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the clinked to F.201) n ramp set 1. (linked to F.252) of an acceleration with ramp set 1. (linked to F.253) inning of a deceleration with ramp set 1. (linked to F.202)	0.50 one used by defau 0.60 1.40	0.01 ult, durin 0.01 0.01 0.01	10.00 g normal 5.00 10.00
S.231 S.232 S.233	Jerk acc ini 1 Jerk (m/s³) applied at the begroperation). Acceleration 1 Linear acceleration (m/s²) with Jerk acc end 1 Jerk (m/s³) applied at the end 1 Jerk (m/s³) applied at the begroperation 1 Linear deceleration (m/s²) with Jerk dec end 1 Jerk dec end 1 Jerk (m/s³) applied at the begroperation (m/s²) with Jerk dec end 1 Jerk (m/s³) applied at the begroperation (m/s³) applied	(linked to F.251) nning of an acceleration with ramp set 1 (Ramp set 1 is the linked to F.201) n ramp set 1. (linked to F.252) of an acceleration with ramp set 1. (linked to F.253) inning of a deceleration with ramp set 1. (linked to F.202) n ramp set 1. (linked to F.202) n ramp set 1.	0.50 one used by defau 0.60 1.40 0.60	0.01 ult, durin 0.01 0.01 0.01	10.00 g normal 5.00 10.00 10.00

Code	Display (Description)		Def.	Min.	Max
S.241	Acceleration 2 Linear acceleration (m/s²) with ra	(linked to F.203) amp set 2.	0.60	0.01	5.00
S.242	Jerk acc end 2 Jerk (m/s³) applied at the beginn	(linked to F.256) ning of a deceleration with ramp set 2.	1.40	0.01	10.00
S.243	Jerk dec ini 2 Jerk (m/s³) applied at the beginn	(linked to F.257) ning of a deceleration with ramp set 2.	1.40	0.01	10.00
S.244	Deceleration 2 Linear deceleration (m/s²) with re	(linked to F.204) amp set 2.	0.60	0.01	5.00
S.245	Jerk dec end 2 Jerk (m/s³) applied at the beginn	(linked to F.258) ning of a deceleration with ramp set 2.	1.00	0.01	10.00
S.250	Cont close delay Delay time (s) for safe closing or	(linked to A.080) r the run contactor.	0.20	0.00	10.00
S.251	Magnet time Duration (s) of the initial magnet	(linked to A.081) ization of the motor with DC injection.	1.00	0.00	10.00
S.252	Brake open delay Delay time (s) between the open	(linked to A.082) n command and effective opening of the mechanical brake.	0.20	0.00	10.00
S.253	Smooth start dly Duration (s) of the smooth start	(linked to A.083) phase.	0.00	0.00	10.00
S.254		(linked to A.084) se, after the speed has fallen below the zero threshold (defined below the output a DC current, or maintain a low frequency, in order 260.	<i>y</i> .	ter P.440	
S.255	Brake close dly Delay time (s) between the close	(linked to A.085) e command and the effective engagement of the mechanical bra	0.20 ake.	0.00	10.00
S.256	Cont open delay Delay time (s) between the open	(linked to A.086) a command and the affective opening of the run contactor.	0.20	0.00	10.00
S.260	·	(linked to A.220) the zero threshold (defined by P.440), the inverter can be prograin a low frequency output in order to compensate for the estir [0] DC brake at stop [1] Normal stop	grammed		with DC
S.300	Manual boost [%] Voltage boost (% of motor rated	(linked to P.120) voltage) applied at low frequency in order to maintain the mach	3.0 ine flux.	0.0	25.0
S.301	•	(linked to P.122) recise compensation of the resistive voltage drop due to the winc of the load level and output frequency. For correct operation of th ce is needed. [0] Disable [1] Enable	•	ance, ke	
S.310	Slip compensat Amount of slip compensation (%	(linked to P.100) of rated slip, calculated from nameplates) during motoring (power	50 er flows fro	o om motor	250 to load).
S.311	Slip comp regen	(linked to P.102)	50	0	250
A C 1					70

Code	Display (Description)		Def.	Min.	Max
	Amount of slip compensation to motor).	on (% of rated slip, calculated from nameplates) during regeneration	n (power flow	vs back	from load
S.312	Slip comp filter	(linked to P.101)	0.3	0.0	10.0
	. ,	er used for slip compensation. The lower this value, the faster the fast slip compensation may cause unwanted oscillations.	compensation	on, with	improved
S.320	DC braking level	(linked to P.300)	75	0	100
	Amount of current (% of dri	ve rated current) injected during magnetization and stopping phas	ses.		
S.400	Control mode	(linked to P.010)	[0] V/f	OpenL	-oop
	Set to "[1] Closed loop V/f"	pen loop V/f" when there is no encoder feedback available. otherwise.			
	Possible selections:	[0] V/f OpenLoop [1] V/f ClsdLoop			
S.401	Encoder ppr	(linked to I.501)	1024	1	9999
	Resolution of the encoder in encoder.	n use, expressed in number of pulses per mechanical revolution (pp	r). It is a nam	eplate d	lata of the
S.450	Spd ctrl P-gainH	(linked to P.172)	2.0	0.0	100.0
	Proportional gain of speed	PI regulator.			
S.451	Spd ctrl I-gainH	(linked to P.173)	1.0	0.0	100.0
	Integral gain of speed PI re	egulator.			
S.452	Spd PI High lim	(linked to P.176)	10.0	0.0	100.0
	Maximum allowed output of slip that is allowed during m	the speed PI regulator (% of maximum frequency, F.020). It reprenotoring operation.	sents the ma	ximum	amount of
S.453	Spd PI Low lim	(linked to P.177)	-10.0	-100	.0 0.0
		the speed PI regulator (% of maximum frequency, F.020). It repreed during braking operation.	sents the ma	ximum	amount of
	lote! It is possible to	o configure gain scheduling for the speed PI regulator.			
S 001	Save parameters	(linked to C 000)			

S.901 Save parameters (linked to C.000)

The execution of this command will save all the parameters into the permanent memory of the drive. All unsaved settings will be lost if the power is cycled.

7.5 Menù Display

Codo	Dianloy	Description	Unit	Vor	IPA
	Display Output fraguency	Description Drive output frequency	Unit Hz	Var.	001
	Output frequency	· · · ·		0.01	
	Frequency ref	Drive frequency reference	Hz	0.01	002
d.002	Output current	Drive output current (rms)	Α	0.1	003
d.003	Output voltage	Drive output voltage (rms)	V	1	004
d.004	DC link voltage	DC Bus drive voltage (DC)	V	1	005
d.005	Power factor	Power factor		0.01	006
d.006	Power [kW]	Inverter output power	kW	0.01	007
d.007	Output speed	Drive output speed	mm/s	1	800
d.008	Speed ref	Drive speed reference (d.001)*(P.600)	mm/s	1	009
d.050	Heatsink temp	Drive heatsink temperature (linear sensor measured)	°C	1	010
d.051	Drive OL	Drive overload (100% = alarm threshold)	%	0.1	011
d.052	Motor OL	Motor overload (100% = alarm threshold)	%	0.1	012
d.053	Brake res OL	Braking resistor overload (100%=alarm thr)	%	0.1	013
d.100	Dig inp status	Digital inputs status acquired by the drive (terminal or virtual)			014
d.101	Term inp status	Digital inputs terminal status of the drive regulat. Board			015
d.102	Vir dig inp stat	Virtual digital inputs status from drive serial link or field bus card			016
d.120	Exp dig inp stat	Expansion digital inputs status (optional terminal or virtual)			017
d.121	Exp term inp	Expansion digital inputs terminal status of the drive expansion board			018
d.122	Vir exp dig inp	Expansion virtual digital inputs status from drive serial link or field bus	card		019
d.150	Dig out status	Digital outputs status on the terminals of the drive regulation board			020
1454	Donalis and ata	(commanded by DO functions or virtual DO)			004
	Drv dig out sta	Digital outputs status, commanded by DO functions			021
d.152 022	Vir dig out sta	Virtual digital outputs status, commanded via serial link or field bus car	rd		
d.170	Exp dig out sta	Expansion digital outputs status on the terminals of the drive regulation (commanded by DO functions or virtual DO)	n board		023
d.171	Exp DrvDigOutSta	Expansion digital outputs status, commanded by DO functions			024
d.172	Exp VirDigOutSta	Expansion virtual digital outputs status			025
		(commanded via serial link or field bus card)			
d.200	An in 1 cnf mon	Analog input 1 destination;			026
		it shows the function associated to this analog input [0] Null funct [1] Rif freq 1 [2] Rif freq 2 [3] Fatt liv Bst [4] Fatt liv OT [5] FattLiv Vred [6] Fatt liv DCB [7] FattEst Ramp [8] FattRif freq [9] VeIPI LimFac [10] MltFrq ch 1 [11] MltFrq ch 2			
A C I					0.1

Code	Display	Description Unit	Var.	IPA
d.201	An in 1 monitor	Analog input 1 output block % value		027
d.202	An in 1 term mon	Analog input 1 input block % value		028
d.210	An in 2 cnf mon	Analog input 2 destination;		029
		it shows the function associated to this AI. As per d.200		
d.211	An in 2 monitor	Analog input 2 output block % value		030
d.212	An in 2 term mon	Analog input 2 input block % value		031
d.220	An in 3 cnf mon	Analog input 3 destination;		032
		it shows the function associated to this Al. As per d.200		
d.221	An in 3 monitor	Analog input 3 output block % value		033
d.222	An in 3 term mon	Analog input 3 input block % value		034
d.250	LCW To PLC (0-7)	Monitor of the control bits sent to the internal sequencer. Bit 0 to 7		66
d.251	LCW To PLC(8-15)	Monitor of the control bits sent to the internal sequencer. Bit 8 to 15		67
d.252	LCW Fr PLC (0-7)	Monitor of the control bits generated by the internal sequencer. Bit 0 to 7		68
d.253	LCW Fr PLC(8-15)	Monitor of the control bits generated by the internal sequencer. Bit 8 to 15		69
d.254	LCW FrPLC(16-23)	Monitor of the control bits generated by the internal sequencer. Bit 16 to 23		70
d.255	LSW (0-7)	Monitor of the drive status. Bit 0 to 7.		71
d.300	EncPulses/Sample	Number of encoder pulses, recorded in the time interval defined by parameter I.504.	1/100	035
d.301	Encoder freq	Encoder frequency reading (Motor frequency) Hz	0.01	036
d.302	Encoder speed	Encoder speed reading (d.000)*(P.600)	0.01/1	037
d.350	Option 1 state	Drive option 1 state		038
d.351	Option 2 state	Drive option 2 state		039
d.353	Sbi state	Communication state between SBI and Master 0 Wait parametrization 1 Wait configuration 2 Data exchange 3 Error		059
d.354	Sbi baudrate	Communication speed between SBI and Master 0		060
d.400	PID reference	PID reference signal %	0.1	041
d.401	PID feedback	PID feedback signal %	0.1	042
d.402	PID error	PID error signal %	0.1	043
d.403	PID integr comp	PID integral component %	0.1	044
d.404	PID output	PID output signal %	0.1	045

Code	Display	Description Unit	Var.	IPA
d.450	Mdplc error	Status of internal sequencer		62
		0 No error		
		1 Internal sequencer error		
d.500	Lift space	m	0.01	63
		Space needed to accelerate the car from zero to max speed and then decelerate back to ze	ero	
d.501	Lift space			
		Space needed to accelerate the car from zero to max speed		
d.502	Lift space	m	0.01	65
		Space needed to decelerate the car from max speed to zero		
d.800	1st alarm-latest	Last alarm stored by the drive alarm list		046
		See par. 10.3		
d.801	2nd alarm	Second to last alarm		047
d.802	3rd alarm	Third to last alarm		048
d.803	4th alarm	Fourth to last alarm		049
d.950	Drive rated curr	Drive rated current (it depends on the drive size)	0.1	050
d.951	SW version (1/2)	Software version - part 1 (03.01)	0.01	051
d.952	SW version (2/2)	Software version - part 2 (00.00)	0.01	052
d.957	Drive size	Drive size code		057
		4 4kW - 230/400/460V		
		5 5.5kW - 230/400/460V		
		6 7.5kW - 230/400/460V		
		7 11kW - 230/400/460V		
		8 15kW - 230/400/460V		
		9 22kW - 230/400/460V		
		10 30kW - 230/400/460V		
		11 37kW - 230/400/460V		
		12		
		15		
		15 90kW - 230/400/460V		
		16 110kW - 230/400/460V		
		17 132kW - 230/400/460V		
		18 160kW - 230/400/460V		
		21 18.5kW - 230/400/460V		
		25 200kW - 230/400/460V		
d.958	Drive cfg type	Drive configuration type		061
		[0]Standard: 400Vac, 50Hz		
		[1] American: 460Vac, 60Hz		
d.999	Display Test	Drive display test		

8 - Encoder Interface (EXP-ENC-AGy option board)

AGy -L provides an enhanced encoder interface for closed loop speed control.

Standard two channels quadrature digital encoders with 5V, 8V or 24V power supply can be used. Maximum input frequency on either channel is 150kHz.

8.1 Wiring

The EXP-ENC-AGy expansion card allows the connection of a digital encoder TTL (+5V) or HTL (+24V). Default setting= HTL (+24V)

24V	' Encoder mains supply	When an HTL encoder is used, on terminals 9 and 10 of R-AGy-2 regulation card
		is available the following voltage:
		- terminal 9 : +24V OUT
		- terminal 10 : 0V24 - GND
8V,	5V Encoder mains supply	This DC supply is available on terminals 35 and 36 of EXP-ENCAGy card:
Terr	n. Designation	Function
Terr	n. Designation	Function A channel positive
12	A+	A channel positive
12 13	A+ A-	A channel positive A channel negative
12 13 14	A+ A- B+	A channel positive A channel negative B channel positive

^(*) selectable via software by I.505 parameter, into INTERFACE menu.

8.2 Setting of encoder power supply

24V HTL encoders can be supplied by using the +24V output, available on the standard regulation board (terminal 9); in that case terminals 35 and 36 on EXP-ENC-AGy card should be left unconnected.

The two jumpers S1 on the EXP-ENC-AGy board must be OFF (default), meaning that A and B channels are HTL.

TTL encoders, requiring 5V or 8V power supply can be supplied by using terminals 35 and 36 of EXP-ENC-AGy. The voltage level output on those terminals is determined by the drive parameter: **I.505 Enc power supply**. Allowed settings are:

- [0] 5.2V
- [1] 5.6V
- [2] 8.3V
- [3] 8.7V

Proper setting is determined according to encoder specifications and cable length. The longer is the cable connecting the external power supply to the encoder, the higher should be the setting.

Select the two **jumpers S1**, on the EXP-ENC-AGy board, to **ON**, meaning that A and B channels are TTL. Refer to **Fig.7.1** for a sample wiring diagram.

8.3 Encoder sign test

Before to use closed loop speed control it is necessary to verify if sign of acquired encoder speed corresponds to reference speed. For this:

- 1 run the drive in open loop mode and set **S.400 Control mode** = [0] V/f OpenLoop; **I.500 Encoder enable** = [1] Enable)
- 2 on Display menu select d.001 Rif frequenza and d.301 Freq. encoder parameters and compare the signs .
- 3 in case of different signs please invert connection of encoder channels A+, A- with B+, B-

8.4 Encoder cable break control function

The encoder cable break control function is available from card EXP-ENC-AGy rev. C with fw 3.04 and later.

To enable the function, set parameter **I.506 Enc fault enable** = 1 (Enabled)

Note!

For instructions on how to connect single-channel encoders and enable the encoder cable break control function and for details of electrical specifications and configurations, please see the manual supplied with the EXP-ENC-AGy card.

9 - Emergency Operation

AGy -L is able to operate from a backup power supply (batteries, or single-phase 220Vac) in case of mains fault. In figure 7.1, typical connection diagram of the Emergency Module MW22 is shown. When using this configuration, the following parameters have to be changed from default, in order to activate the emergency operation:

- I.005 Freq Sel 3 src = "[0] False"
- I.011 Bak pwr act src = "[7] DI 6"

When the drive detects an Under Voltage condition (either because of a mains fault or because the drive has been powered up from backup module), if the "Bak Pwr Active" command is active (contactor KB closed), the UV Alarm is automatically reset and the drive will enter the Emergency Mode.

While in Emergency mode, the drive is able to operate with a low DC-link voltage (supplied from the emergency module). Operation is exactly the same as in normal mode (Run command and frequency reference are issued as usual), but the inverter output frequency is clamped by the internal logic to the value specified in parameter **F.115 BakPwr max freq**

Note!

While in Emergency Mode, the AC-mains contactor must be open.

If the AC-mains contactor is closed and the power is restored while the drive is still in Emergency Mode, the input bridge of the inverter may fail due to inrush current of DC-link capacitors.

Once the emergency operation is completed, the drive should be turned off, by opening contactor KB, in order not to discharge the batteries. When the drive is turned off, the AC mains contactor K1M can be closed, so that the drive is ready to operate when the power is restored.

10 - Troubleshooting

10.1 Drive Alarm Condition

The drive keypad will show on the 2nd line of alphanumeric display a blinking message with the code and name of the alarm occurred.

The figure below shows an example of **OV Overvoltage** alarm condition during **d.000 Output frequency** parameter displaying.

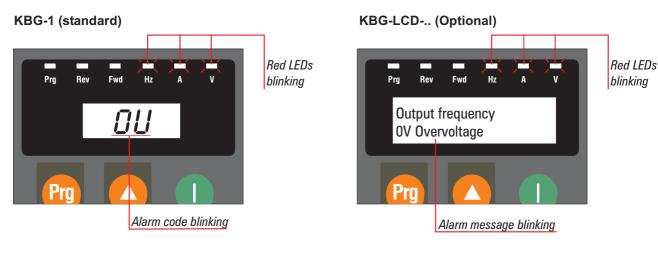


Figure 10.1.1: Alarm Displaying for LDC and 7 segments display

The active alarm can be acknowledged by pressing the **Prg** button on the keypad.

This operation will allow menu navigation and parameter editing while the drive is in alarm state (red LEDs blinking).

In order to resume drive operation, an Alarm reset command is necessary.

10.2 Alarm Reset

Alarm reset can be performed in three different ways:

- Alarm reset by keypad:
- Alarm reset by digital input:
- . Alarm reset by Autoreset function:

pressing simultaneously **Up** and **Down** keys; the reset action will take effect when the buttons are released.

it can be performed through a programmable digital input connected to command I.010 Fault reset src = [9] Digital input 8 (terminal 4).

it allows an automatic reset of some drive alarms (see table 10.3.1), by the settings of **P.380**, **P.381**, **P.382** and **P.383** parameters.

The figure below shows how to reset an alarm by keypad.



Figure 10.2.1: Alarm Reset

10.3 List of drive alarm events

Table 10.3.1 provides a description of the causes for all the possible alarms.

	ALARM	DESCRIPTION	Numerical code from serial	AUTORESET	Bit H.062 H.063
Cod.	Name	D_001.11 110.11	Num code se	АПТО	Bit H H.
EF	EF Ext Fault	It trips when External fault input is active	1	YES	0
ос	OC OverCurrent	It trips when an Overcurrent value is detected by output current sensor	2	YES	1
ou	OV OverVoltage	It trips when the drive DC Bus voltage is higher than the maximun threshold for the given main voltage setting	3	YES	2
UU	UV UnderVoltage	It trips when the drive DC Bus voltage is lower than the maximun threshold for the given main voltage setting	4	YES	3
ОН	OH OverTemperat	It trips when the drive heatsink temperature detected by the switch sensor exceeds its threshold (*)	5	NO	4
OLi	OLi Drive OL	It trips when the drive overload accumulator exceeded the trip threshold	6	NO	5
OLM	OLM Motor OL	It trips when the motor overload accumulator exceeded the trip threshold	7	NO	6
OLr	OLr Brake res OL	Its intervention occurs when the overload cycle of the external braking resistance does not correspond to the defined limits.	8	NO	7
Ot	Ot Inst OverTrq	It trips when the torque delivered by the motor exceeds the programmed level for the preset time	9	NO	8
PH	PH Phase loss	It trips when the supply phase lack: enabled 30 seconds after one of the supply phases has been disconnected	10	NO	9
FU	FU Fuse Blown	It trips when the drive input fuses are blown	11	NO	10
осн	OCH Desat Alarm	IGBT desaturation or instantaneous overcurrent have been detected	12	YES	11
St	St Serial TO	It trips when the serial link time out exceeds the programmed level (I.604 parameter)	13	YES	12
OP1	OP1 Opt 1 Alm	Communication failure between drive regulation board and option 1 expansion board	14	NO	13
OP2	OP2 Opt 2 Alm	Communication failure between drive regulation board and option 2 expansion board	15	NO	14
bF	bF Bus Fault	Drive comunication Bus failure	16	NO	15
онѕ	OHS OverTemperat	It trips when the drive heatsink temperature exceeds a safety level. (*)	17	NO	16
SHC	SHC Short Circ	Short Circuit between output phases or Ground fault	18	NO	17
Ohr		Reserved	19		18
Lf	LF Limiter fault	It trips when the output current limiter or the DC-Link voltage limiter fail. The failure can be caused by wrong settings of regulator gains or by the motor load.	20	NO	19
PLC	PLC Plc fault	PLC program not active. Lift application does not function. Run C.050 parameter to reset the alarm.	21	NO	20
EMS	Key Em Stp fault	Reserved	22	NO	21
UHS	UHS Under Temperat	It trips when the temperature of the drive heatsink is below a safety level (typically –5°C).	23	NO	22
ENC	Encoder fault	It trips in case of a power loss on the cable connecting the encoder to the drive.	24	NO	23
РНО	Phase Loss Output	See figure 7.2: it trips during the phase (2) if the current does not exceed the limit defined in parameter A.087.	25	NO	24

^{*)} OH switch sensor threshold and OHS analog sensor threshold depend on the drive size (75 °C ... 85 °C)

Table 10.3.1 Alarm event list

11 - EMC Directive

EMC Directive

The possible Validity Fields of the EMC Directive (89/336) applied to PDS

"CE marking" summarises the presumption of compliance with the Essential Requirements of the EMC Directive, which is formulated in the EC Declaration of Conformity Clauses numbers [.] refer to European Commission document "Guide to the Application of Directive 89/336/EEC" 1997 edition. ISBN 92-828-0762-2

	Validity Field	Description
DM or BDM directly	-1- Finished Product/ Complex component available to general public [Clauses: 3.7, 6.2.1, 6.2.3.1 & 6.3.1] A PDS (or CDM/BDM) of the Unrestricted Distribution class	Placed on the market as a single commercial unit for distribution and final use. Free movement based on compliance with the EMC Directive - EC Declaration of conformity required - CE marking required - PDS or CDM/BDM should comply with IEC 1800-3/EN 61800-3 The manufacturer of the PDS (or CDM/BDM) is responsible for the EMC behaviour of the PDS (or CDM/BDM), under specified conditions. EMC measures outside the item are described in an easy to understand fashion and could actually be implemented by a layman in the field of EMC. The EMC responsibility of the assembler of the final product is to follow the manufacturer's recommendations and guidelines. Note: The manufacturer of the PDS (or CDM/BDM) is not responsible for the resulting behaviour of any system or installation which includes the PDS, see Validity Fields 3 or 4.
Relates to PDS or CDM or BDM directly	Finished Product/ Complex component only for professional assemblers [Clauses: 3.7, 6.2.1, 6.2.3.2 & 6.3.2] A PDS (or CDM/BDM) of the Restricted Distribution class sold to be included as part of a system or installation	Not placed on the marked as a single commercial unit for distribution and final use. Intended only for professional assemblers who have a level of technical competence to correctly install. - No EC Declaration of conformity - No CE marking - PDS or CDM/BDM should comply with IEC 1800-3/EN 61800-3 The manufacturer of the PDS (or CDM/BDM) is responsible for the provision of installation guidelines that will assist the manufacturer of the apparatus, system or installation to achieve compliance. The resulting EMC behaviour is the responsibility of the manufacturer of the apparatus, system, or installation, for which its own standards may apply.
f PDS or CDM or BDM	-3- Installation [Clause: 6.5] Several combined items of system, finished product or other components brought together at a given place. May include PDSs (CDM or BDM), possibly of different classes - Restricted or Unrestricted	Not intended to be placed on the market as a single functional unit (no free movement). Each system included is subject to the provisions of the EMC Directive. - No EC Declaration of conformity - No CE marking - For the PDSs or CDM/BDMs themselves see Validity Fields 1 or 2 - Responsibility of the manufacturer of the PDS may include commissioning The resulting EMC behaviour is the responsibility of the manufacturer of the installation in cooperation with the user (e.g. by following an appropriate EMC plan). Essential protection requirements of EMC Directive apply regarding the neighbourhood of the installation.
Relates to application of PDS or CDM or BDM	-4- System [Clause: 6.4] Ready to use finished item(s). May include PDSs (CDM or BDM), possibly of different classes - Restricted or Unrestricted	Has a direct function for the final user. Placed on the market for distribution as a single functional unit, or as units intended to be easily connected together. - EC Declaration of conformity required - CE marking required for the system - For the PDSs or CDM/BDMs themselves see Validity Fields 1 or 2 The resulting EMC behaviour, under specified conditions is the responsibility of the manufacturer of the system by using a modular or system approach as appropriate. Note: The manufacturer of the system is not responsible for the resulting behaviour of any installation which includes the PDS, see Validity Field 3.

Examples of application in the different Validity Fields:

- 1 BDM to be used anywhere: (example in domestic premises, or BDM available from commercial distributors), sold without any knowledge of the purchaser or the application. The manufacture is responsible that sufficient EMC can be achieved even by any unknown customer or layman (snap-in, switch-on).
- 2 CDM/BDM or PDS for general purpose: to be incorporated in a machine or for industrial application This is sold as a subassembly to a professional assembler who incorporates it in a machine, system or installation. Conditions of use are specified in the manufacturer's documentation. Exchange of technical data allows optimisation of the EMC solution.. (See restricted distribution definition).
- 3 Installation: It can consist of different commercial units (PDS, mechanics, process control etc.). The conditions of incorporation for the PDS (CDM or BDM) are specified at the time of the order, consequently an exchange of technical data between supplier and client is possible. The combination of the various items in the installation should be considered in order to ensure EMC. Harmonic compensation is an evident example of this, for both technical and economical reasons. (E.g. rolling mill, paper machine, crane, etc.)
- System: Ready to use finished item which includes one or more PDSs (or CDMs/BDMs); e.g. household equipment, air conditioners, standard machine tools, standard pumping systems, etc.

12 - Parameter list

Figure 12.1: Parameters Description Legend

serial Code: Parameter Code, showed on display. Format = X.YYY: sw number, used via d=DISPLAY F=FREQ & RAMPS X = MenuParameter maximum value P=PARAMETER Parameter minimum value Parameter unit of measure Parameter step of variation S=STARTUP I=INTERFACE A=APPLICATION Parameter default value C=COMMAND YYY = Parameter number H=HIDDEN Parameter LCD DISPLAY: [CODE]: PICK LIST CODE [IN BRAKET] Parameter name, showed on display LCD SELECTION: TEXT ON DISPLAY PARAMETER PICK LIST DEFAULT PA ALIAS MAX [CODE] Z S CODE LCD DISPLAY DESCRIPTION DESCRIPTION LCD SELECTION **START-UP** 400 230 480 Rated value of the line S.000 Mains voltage 230 404 380 voltage (P.020) 400 420 440 460 480 S.001 Mains frequency Rated value of the line 50Hz 50 50 50 60 405 Нz frequency 60 60Hz (P.021)

Note! (ALIAS): On STARTUP menu only.

Parameter code of same parameter on other menu .

(*): Parameter value depends on the drive size.

(1): KBG-LCD-.. keypad: "Confirm? NO"

KBG-1 keypad: "off"

(2): LCD keypad: "Confirm? YES"

KBG-1 keypad: "do"

d.000 Output d.001 Freque d.002 Output d.003 Output d.003 Output d.005 Fower d.006 Fower d.007 Output d.008 Speed d.050 Heatsi d.051 Drive G d.052 Motor d.053 Brake d.100 Dig ing d.101 Exp dig d.121 Exp dig d.122 Vir exp d.150 Dig out d.151 Driv dig	uency ref Rife out current Con out voltage Tens ink voltage Tens er factor Fatti er (kW) Pote out speed Velo ed ref Rife sink temp Tem e CL Sov or CL Sov or CL Sov ing status Stat dig inp stat Stat terminp Stat out status Stat out status Stat	DESCRIPTION Descr	LCD Selection PLAY	Description	Def.	Min	Max	Hz Hz A V V Wmm/s mm/s C % % %	0.01 0.01 0.1 1 1 0.01 0.01 1 1 1 0.1 0.	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
d.001 Freque d.002 Output d.003 Output d.003 Output d.004 DC.lind d.005 Fower d.006 Fower d.007 Output d.008 Sceed d.050 Heatsi d.051 Drive G d.052 Motor d.053 Grake d.100 Dig init d.102 Vir dig d.120 Exp dig d.121 Exp ter d.150 Dig out d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.154 Exp dig d.155 Dig out d.155 Dig out d.156 Dig out d.157 Exp dig d.177 Exp Dig d.177 Exp Dig d.177 Exp Dig	uency ref Rife out current Con out voltage Tens ink voltage Tens er factor Fatti er (kW) Pote out speed Velo ed ref Rife sink temp Tem e CL Sov or CL Sov or CL Sov ing status Stat dig inp stat Stat terminp Stat out status Stat out status Stat	llenza di uscita Inento di frequenza ente di uscita (mrs) inne di DC Bus (DC) de di potenza (Cos phi) tza di uscita dell'inverter dia del motore din di velocità del drive (d.001)*(P600) peratura del dissipatore (misurata da sensore lineare) accarico motore (100% = soolia di allarme) accarico motore (100% = soolia allarme) accarico motore (100% = soolia allarme) accarico motore (100% = soolia allarme) ingressi digitali sulla morsettiera o virtuali) ingressi digitali sulla morsettiera della scheda di regolazione ingressi digitali virtuali da linea seriale o bus di campo ingressi digitali virtuali opzionali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo ouscite digitali sulla morsettiera della scheda di	PLAY					Hz A V V V kW mm/s mm/s °C	0.01 0.1 1 1 0.01 0.01 1 1 1 0.1 0.	002 003 004 005 006 007 008 009 010 011 012 013 014 015
d.001 Freque d.002 Output d.003 Output d.003 Output d.004 DC.lind d.005 Fower d.006 Fower d.007 Output d.008 Sceed d.050 Heatsi d.051 Drive G d.052 Motor d.053 Grake d.100 Dig init d.102 Vir dig d.120 Exp dig d.121 Exp ter d.150 Dig out d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.154 Exp dig d.155 Dig out d.155 Dig out d.156 Dig out d.157 Exp dig d.177 Exp Dig d.177 Exp Dig d.177 Exp Dig	uency ref Rife out current Con out voltage Tens ink voltage Tens er factor Fatti er (kW) Pote out speed Velo ed ref Rife sink temp Tem e CL Sov or CL Sov or CL Sov ing status Stat dig inp stat Stat terminp Stat out status Stat out status Stat	inento di frequenza ente di uscita (mrs) ine di uscita (mrs) ine di uscita (mrs) ine di DC Bus (DC) e di potenza (Cos phi) tza di uscita dell'inverter drà del motore dra del motore dra di el drive (d.001)*(P600) peratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = sodlia di allarme) accarico motore (100% = sodlia allarme) accarico del drive di (morsettiera o virtuali) ingressi digitali sulla morsettiera della scheda di regolazione ingressi digitali virtuali da linea seriale o bus di campo alignessi digitali virtuali opzionali (morsettiera opzionale o virtuali) cingressi digitali virtuali opzionali da linea seriale o bus di campo auscite digitali virtuali opzionali da linea seriale o bus di campo auscite digitali sulla morsettiera della scheda di						Hz A V V V kW mm/s mm/s °C	0.01 0.1 1 1 0.01 0.01 1 1 1 0.1 0.	002 003 004 005 006 007 008 009 010 011 012 013 014 015
d.002 Output d.003 Output d.004 DC.lind d.005 Power d.006 Power d.007 Output d.008 Sceed d.050 Heatsi d.051 Drive G d.052 Motor d.053 Grake d.100 Dig inc d.101 Exp tel d.122 Vir exp d.150 Dig ou d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.154 Drv dig d.155 Dig ou d.151 Drv dig d.152 Vir dig d.154 Drv dig d.155 Dig ou d.155 Dig ou d.155 Dig ou d.156 Dig ou d.157 Drv dig d.157 Drv dig d.158 Drv dig d.159 Dr d.179 Dr	aut current Con aut voltage Tens ink voltage Tens er factor Fatti er fkWl Pote aut speed Velc ed ref Rife sink temp Tem e CL Sov ar CL Sov ar enes CL Sov ing status Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	ante di uscita (mrs) inne di uscita (mrs) inne di DC Bus (DC) e di potenza (Cos phi) tza di uscita dell'inverter drà del motore dra del motore dra del drive (d.001)*(P600) peratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = sodlia di allarme) accarico motore (100% = sodlia allarme) accarico del drive (100% = sodlia allarme) accarico motore (100% = sodlia allarme) accarico motore (100% = sodlia allarme) accarico del drive (100% = sodlia allarme) accarico motore (100% = sodlia allarme) accarico motore (100% = sodlia allarme) accarico del drive (100% = sodlia allarme) accarico del drive (100% = sodlia allarme) accarico del drive (100% = sodlia allarme) accarico motore (100% = sodlia allarme						A V V kW mm/s cC %	0.1 1 0.01 0.01 1 1 1 0.1 0.1	003 004 005 006 007 008 009 010 011 012 013 014 015
d.003 Output d.004 IC Clini d.005 Fower d.006 Fower d.007 Output d.008 Speed d.050 Heatsi d.051 Drive G d.052 Motor d.053 Brake d.100 Dig inc d.101 Exp dig d.122 Vir exp d.150 Dig out d.151 Dry dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.154 Dry dig d.155 Dig out d.155 Dig out d.151 Dry dig d.152 Vir dig d.152 Vir dig d.154 Dry dig d.155 Dig out d.155 Dig out d.155 Dig out d.156 Dig out d.157 Dry dig d.157 Dry dig d.158 Dry dig d.159 Dry dig d.179 Dry dig d.171 Dry Dry dig d.171 Dry Dry dig d.171 Dry Dry dig d.171 Dry Dry dig	aut voltage Tensink voltage Tensink voltage Tensier Fattor Fatt voltage Tensier Fattor Fatt voltage Velocity Fattor OL Sow Processor OL Proce	inne di uscita (mms) inne di DC Bus (DC) de di potenza (Cos phi) tza di uscita dell'inverter dia del motore din di velocità del drive (d.001)*(P600) deratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = soolia di allarme) accarico motore (100% = soolia allarme) accarico del drive (100% = soolia allarme) accarico motore (100% = soolia allarme) accarico motore (100% = soolia allarme) accarico motore (100% = soolia allarme) accarico digitali sulla morsettiera o virtuali) accarico ingressi digitali virtuali da linea seriale o bus di campo accarico digitali virtuali opzionali (morsettiera opzionale o virtuali) accarico digitali virtuali opzionali da linea seriale o bus di campo auscite digitali virtuali opzionali da linea seriale o bus di campo auscite digitali sulla morsettiera della scheda di						V V V kW mm/s mm/s °C °C	1 0.01 0.01 1 1 1 0.1 0.1	004 005 006 007 008 009 010 011 012 013 014 015
d.004 DC lini d.005 Rower d.006 Rower d.007 Output d.008 Speed d.050 Heatsi d.051 Drive C d.052 Motor d.053 Brake d.100 Dig ing d.101 Exp dig d.122 Vir exp d.150 Dig ou d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.151 Drv dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.154 Drv dig d.155 Dig ou d.155 Dig ou d.155 Dig ou d.156 Dig ou d.157 Exp dig	ink voltage Tener factor Fatti er (kW) Pote volt soeed Velced ref Rife sishk temp Tem e OL Sow or OL Sow or OL Sow or Status Stati dig inp stat Stati terminp Stati exp dig inp Stati Stati	in di DC Bus (DC) e di potenza (Cos phi) e za di uscita dell'inverter da' del motore da di velocità del drive (d.001)*(P600) paratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = scolia allarme) accarico motore (100% = scolia allarme) acc. resistenza frenatura (100% = scolia allarme) accarico motore (100% = scolia allarme) acc						kW mm/s mm/s °C	1 0.01 0.01 1 1 1 0.1 0.1	005 006 007 008 009 010 011 012 013 014 015
d.005 Power d.006 Power d.006 Power d.007 Output d.008 Speed d.050 Pleatsi d.052 Motor d.053 Prake d.100 Dia ing d.101 Exp dig d.122 Vir exp d.150 Dig ou d.151 Dry dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.171 Exp dig d.171 Exp Dig ou d.1	er factor Fatti er (kW) Pote er (kW) Pote er (kW) Pote but speed Velc ed ref Rife stsink temp Tem e OL Sow or OL Sow er res OL Sow inp status Stat lig inp stat Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	e di potenza (Cos phi) aza di uscita dell'inverter da' del motore da di velocità del drive (d.001)*(P600) paratura del dissipatore (misurata da sensore lineare) accarico motore (100% = scolia di allarme) accarico motore (100% = scolia allarme) acc. resistenza frenatura (100% = scolia allarme) acc. resistenza frenatura (100% = scolia allarme) cincressi digitali sulla morsettiera o virtuali) cincressi digitali sulla morsettiera della scheda di regelazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali virtuali opzionali (morsettiera opzionale o virtuali) cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						kW mm/s mm/s °C %	0.01 0.01 1 1 1 0.1	006 007 008 009 010 011 012 013 014 015
d.006 Rower d.007 Output d.008 Speed d.050 Heatsi d.051 Drive G d.052 Motor d.053 Brake d.100 Dig ing d.101 Exp dig d.122 Vir exp d.150 Dig ou d.151 Dry dig d.152 Vir dig d.152 Vir dig d.152 Vir dig d.154 Exp dig d.155 Dig ou d.157 Exp dig d.176 Exp dig d.177 Exp Dig d.177 Exp Dig d.177 Exp Dig	er (kW) Pote but speed Velc ad ref Rife sink temp Tem e OL Sow or OL Sow no status Stat dig inp stat Stat terminp Stat exp dig inp Stat exp dig inp Stat stat status Stat	atza di uscita dell'inverter da' del motore in di velocità del drive (d.001)*(P600) ceratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = soolia di allarme) accarico motore (100% = soolia allarme) acc. resistenza frenatura (100% = soolia allarme) cinoressi digita i sulla morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali cpzionali (morsettiera opzionale o virtuali) cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali virtuali opzionali dalla scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						mm/s mm/s °C	0.01 1 1 1 1 0.1	007 008 009 010 011 012 013 014 015
d.007 Output d.008 Speed d.050 Heatsi d.051 Drive (d.052 Motor d.053 Brake d.100 Dig ing d.101 Exp dig d.122 Vir exp d.150 Dig ou d.151 Drv dig d.152 Vir dig d.171 Exp Di d.171 Exp Di d.171 Exp Di d.172 Exp Vir	aut speed Velded ref Rife ed Led ref Rife ed Led ref Rife sink temp Tem e OL Sow or OL Sow e res OL Sow no status Stat lig inp stat Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	ta' del motore in di velocità del drive (d.001)*(P600) cratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = sodia di allarme) accarico motore (100% = sodia allarme) acc. resistenza frenatura (100% = sodia allarme) cinoressi digit, abilitati (morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali cpzionali (morsettiera opzionale o virtuali) cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali virtuali opzionali dalla scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						mm/s mm/s °C	1 1 1 0.1 0.1	008 009 010 011 012 013 014 015
d.008 Speed d.050 Heatsi d.051 Drive (d.052 Motor d.053 Brake d.100 Dig ing d.101 Exp dig d.122 Vir exp di.151 Drv dig d.152 Vir dig d.152 Vir dig d.171 Exp Dr d.171 Exp Dr d.171 Exp Dr d.172 Exp Vir dig d.171 Exp Dr d.172 Exp Vir dig d.172 Exp V	ad ref Rife ed ref Rife tsink temp Tem e OL Sow or OL Sow e res OL Sow np status Stat ninp status Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	in di velocità del drive (d.001)*(P600) cratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = sodia di allarme) accarico motore (100% = sodia allarme) acc. resistenza frenatura (100% = sodia allarme) cinoressi digita i sulla morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali cpzionali (morsettiera opzionale o virtuali) cingressi digitali virtuali opzionali da linea seriale o bus di campo cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						mm/s °C %	0.1	009 010 011 012 013 014 015
d.050 Heatsi d.051 Drive (d.052 Motor d.053 Brake d.100 Dig ing d.101 Exp dig d.122 Vir exp di.151 Drv dig d.152 Vir dig d.152 Vir dig d.171 Exp Di	tsink temp Tem e OL. Sov or OL. Sov e res OL. Sov np status Stat lig inp stat Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	caratura del dissipatore (misurata da sensore lineare) accarico del drive (100% = soolia di allarme) accarico motore (100% = soolia allarme) acc. resistenza frenatura (100% = soolia allarme) cinoressi digita i sulla morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali opzionali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						°C %	0.1	011 012 013 014 015
d.052 Motor d.053 Frake d.100 Dig ing d.101 Femili d.102 Vir dig d.120 Exp dig d.121 Exp ter d.150 Dig ou d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Di d.172 Exp Vir dig d.171 Exp Di d.172 Exp Vir dig	or OL Sover are soll Sover are soll Sover are soll Sover are soll Sover an extension of the solution of the so	accarico motore (100% = scolia allarme) acc. resistenza frenatura (100% = scolia allarme) cingressi digitali sulla morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali cpzionali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						%	0.1	012 013 014 015 016
d.052 Motor d.053 Frake d.100 Dig ing d.101 Femili d.102 Vir dig d.120 Exp dig d.121 Exp ter d.150 Dig ou d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Di d.172 Exp Vir dig d.171 Exp Di d.172 Exp Vir dig	or OL Sover are soll Sover are soll Sover are soll Sover are soll Sover an extension of the solution of the so	a c. resistenza frenatura (100% = soglia allarme) cingressi digit, abilitati (morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali opzionali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di								013 014 015 016
d.100 Diging d.101 ermin d.102 Vir dig d.120 Exp dig d.121 Exp ter d.150 Dig ou d.151 Dry dig d.152 Vir dig d.170 Exp dig d.171 Exp Dig d.172 Exp Vi	np status Stat ninp status Stat lig inp stat Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	cingressi digit, abilitati (morsettiera o virtuali) cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali virtuali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di						%	0.1	014 015 016
d.101 fermind. d.102 Vir dig d.120 Exp dig d.121 Exp ter d.122 Vir exp d.150 Dig out d.151 Dry dig d.152 Vir dig d.170 Exp dig d.171 Exp Dig d.172 Exp Vir	ninp status Stat lig inp stat Stat dig inp stat Stat terminp Stat exp dig inp Stat out status Stat	cingressi digitali sulla morsettiera della scheda di regolazione cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali virtuali da linea seriale o bus di campo cingressi digitali opzionali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di								015 016
d.102 Virdig d.120 Expdig d.121 Expter d.122 Virex d.150 Dig ou d.151 Drv dig d.152 Virdig d.170 Expdig d.171 Exp Di d.172 Exp Vi	lig inp stat Stat dig inp stat Stat term inp Stat exp dig inp Stat out status Stat	regolazione oingressi digitali virtuali da linea seriale o bus di campo oingressi digitali virtuali da linea seriale o bus di campo oingressi digitali opzionali (morsettiera opzionale o virtuali) oingressi digitali sulla morsettiera della scheda opzionale oingressi digitali virtuali opzionali da linea seriale o bus di campo ouscite digitali sulla morsettiera della scheda di								016
d.120 Exp dig d.121 Exp ter d.122 Vir exp d.150 Dig ou d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Dr d.172 Exp Vi	dig inp stat Stat term inp Stat xxx dig inp Stat out status Stat	cingressi digitali opzionali (morsettiera opzionale o virtuali) cingressi digitali sulla morsettiera della scheda opzionale cingressi digitali virtuali opzionali da linea seriale o bus di campo cuscite digitali sulla morsettiera della scheda di								
d.121 Exp ter d.122 Vir exp d.150 thig ou d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Dr d.172 Exp Vi	terminp Stat xp dig inp Stat out status Stat	oingressi digitali sulla morsettiera della scheda opzionale dingressi digitali virtuali opzionali da linea seriale o bus di campo duscite digitali sulla morsettiera della scheda di								017
d.122 Vir exp d.150 Dig ou d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Di d.172 Exp Vi	exp dig inp Stat out status Stat	dingressi digitali virtuali opzionali da linea seriale o bus di campo ouscite digitali sulla morsettiera della scheda di								
d.150 Dig ou d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Dr d.172 Exp Vi	out status Stat	campo uscite digitali sulla morsettiera della scheda di			-					018
d.151 Drv dig d.152 Vir dig d.170 Exp dig d.171 Exp Dr d.172 Exp Vi		· ·								019
d.152 Virdig d.170 Expdi d.171 Exp Vi d.172 Exp Vi	dig out sta Stat									020
d.170 Exp di d.171 Exp Di d.172 Exp Vi		uscite digitali comandate dalla funzione del drive								021
d.171 Είχρ Di d.172 Είχρ Vi	lig out sta Stat	uscite digitali virtuali comandate via linea seriale o bus di								022
d.172 Exp Vi	dig out sta Stat	despansione usoite digitali sulla morsettiera della scheda di regolazione comandate dalla funzione drive o virtuale)								023
	DrvDigOutSta Stat	despansione uscite digitali comandate dalla funzione del								024
d.200 <i>A</i> nin 1	VirDigOutSta Stat	espansione uscite digitali virtuali comandate via linea								025
	11 onf mon	Destinazione ingresso analogico 1; visualizza la funzione associata all'ingresso analogico	[0] Null funct [1] Freq ref 1 [2] Freq ref 2 [3] Bst lev fact [4] OT lev fact [5] Vired lev fac [6] DCB lev fact [7] RampExt fact [8] Freq Ref fact [9] SpdPl LimFac [10] MtFrq ch 1 [11] MtFrq ch 2							026
d.201 <i>A</i> n in 1	n 1 monitor Seg	nale d'uscita (%) del blocco dell'ingresso analogico 1	[11]Milliqui2							027
d.202 /min 1	n 1 term mon Sen	nele in morsettiera (%) dell'ingresso analogico 1								028
d.210 Anin 2		parmazione ingresso analogico 2; mostra la funzione	Come per d.200							029
d.211 <i>I</i> n in 2	n 2 monitor Seg	nele d'uscita (%) del blocco dell'ingresso analogico 2								030
d.212 An in 2		nele in morsettiera (%) dell'ingresso analogico 2	Comp nor d 000							031
d.220 Anin 3		nammazione ingresso analogico 3; mostra la funzione	Come per d.200							032
		nelle d'uscita % del blocco dell'ingresso analogico 3								033
d.222 Anin 3 d.250 LCWT	n sterm mon Sea	ele in morsettiera (%) dell'inoresso analogico 3 la dei bit di controllo inviati al sequencer interno.								034 66
d.251 LCWT		Rit da 0.a.7. na dei bit di controllo inviati al sequencer interno.								67
d.252 LCWF	VTo PLC (0-7) Veri	Bit da 8 a 15. ia dei bit di controllo generati dal sequencer interno.								68

		PARAMETER		PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Max	Unit	Variat.	IPA
d.253	LCW Fr PLC(8-15)	Monitor of the control bits generated by the internal sequencer. Bit 8 to 15								69
d.254	LCW FrPLC(16-24)	Monitor of the control bits generated by the internal sequencer. Bit 16 to 24								70
	LSW (0-7)	Monitor of the drive status. Bit 0 to 7								71
d.300	EncPulses/Sample	Number of encoder pulses, recorded in the time interval defined by parameter I.504.							1/100	035
d.301	Encoder freq	Encoder frequency reading (Motor frequency)						Hz	0.01	036
d.302	Encoder speed	Encoder speed reading (d.000)*(P.600)							0.01/1	037
d.350	Option 1 state	Drive option 1 state (expansion board type programmed)								038
d.351	Option 2 state	Drive option 2 state (expansion board type programmed)								039
d.353	Sbi state	Communication state between SBI and Master	0 1 2 3	Wait parametrization Wait configuration Data exchange Error						059
d.354	Sbi baudrate	Communication speed between SBI and Master	0 1 2 3 4 5 6 7 8	12 Mbit / s 6 Mbit / s 3 Mbit / s 1.5 Mbit / s 1.5 Mbit / s 500 Kbit / s 187.5 Kbit / s 93.75 Kbit / s 45.45 Kbit / s 19.2 Kbit / s unknown						060
d.400	PID reference	PID reference signal			1			%	0.1	041
	PID feedback	PID feedback signal		İ	1			%	0.1	042
	PID error	PID error signal		î				%	0.1	043
	PID integr comp	PID integral component			1			%	0.1	044
d.404	PID output	PID output signal		ì				%	0.1	045
d.450	Mdplc error	Status of internal sequencer	0 1	No error Internal sequencer error						62
d.500	Lift space	Space needed to accelerate the car from zero to max speed and then decelerate back to zero						♦	0.01	63
d.501	Lift accel space	Space needed to accelerate the car from zero to max speed						♦	0.01	64
d.502	Lift decel space	Space needed to decelerate the car from max speed to zero						*	0.01	65
	1st alarm-latest	Last alarm stored by the drive alarm list	See paragraph 9.3							046
d.801	2nd alarm	Second to last alarm								047
d.802	3rd alarm	Third to last alarm								048
d.803	4th alarm	Fourth to last alarm								049
d.950	Drive rated curr	Drive rated current (it depends on the drive size)							0.1	050
d.951	SW version (1/2)	Software version - part 1	03.01						0.01	051
d.952	SW version (2/2)	Software version - part 2	00.00						0.01	052
d.957	Drive of three	Drive configuration type	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 25 [0]Standard:400	0.75kW - 230/400/460V 1.5kW - 230/400/460V 2.2kW - 230/400/460V 3kW - 230/400/460V 3kW - 230/400/460V 4kW - 230/400/460V 5.5kW - 230/400/460V 15kW - 230/400/460V 15kW - 230/400/460V 22kW - 230/400/460V 37kW - 230/400/460V 37kW - 230/400/460V 45kW - 230/400/460V 45kW - 230/400/460V 10kW - 230/400/460V 110kW - 230/400/460V 110kW - 230/400/460V						057
d.958	Drive cfg type	Drive configuration type	[0]Standard:400 [1]American:460	Standard: 400Vac, 50Hz American: 460Vac, 60Hz						U61
d.999	Dienlay Toet	Drive display test		 	+			_		099
น.ฮฮฮ	Display Test	Drive display test		<u> </u>	1					055

		PARAMETER		PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
2 222	L		RT-UP	1	.	d 40				40.4
S.000	Mains voltage R	ated value of the line voltage	230 380	·	200 23	30 48	1 V			404 (P.020)
			400							(1.020)
			420							
			440							
			460							
0.004			480							105
S.001	Mains frequency R	ated value of the line frequency	50 60		5 0 5	60) H	2		405 (P.021)
S.100	Base voltage M	tor base (rated) voltage			380	50	528	V	1	413 (P.061)
S.101	Base frequency R	ted frequency of the motor			50	25	250	Hz	0.1	414 (P.062)
S.150	Motor rated curr R	ated current of the motor			(*)	(*)	(*)	А	0.1	406 (P.040)
S.151	Motor pole pairs Po	le Pairs of the motor			2	1	60		0.01	407
S.152	Motor power fact M	tor power factor			(*)	0.01	1		0.01	(P.041) 408
S.153	Motor stator R M	easurement of the stator resistance of the motor			(*)	0	99.99	ohm		(P.042) 409
S.170	Measure stator R M	tor Autotune command	(1)		1) (1) (2				(P.043) 806
		not Autotulie continuitu	(2)		ľ Ì	Ĺ				(C.100)
S.180	Car max speed S	eed of the lift car when the inverter output frequency is equal to S.101			0.50	0.01	5.00	m/s).01	1323 (A.090)
S.200	Frequency ref 0 D	ijital reference frequency 0			10.0	-F.020	F.020		31	(F.100)
S.201	Frequency ref 1 D	ijital reference frequency 1			50.0	-F.020	F.020		31	(F.101)
S.202	Frequency ref 2 D	jital reference frequency 2			0	-F.020	F.020		31	3 (F.102)
S.203	Frequency ref 3 D	pital reference frequency 3			0	-F.020	F.020		31	(F.103)
S.204	Frequency ref 4 D	ital reference frequency 4			0	-F.020	F.020		31	i (F.104)
S.205	Frequency ref 5 D	ital reference frequency 5			0	-F.020	F.020		31	(F.105)
S.206	Frequency ref 6 D	pital reference frequency 6			0	-F.020	F.020		31	(F.106)
S.207	Frequency ref 7 D	jital reference frequency 7			0	-F.020	F.020		31	8 (F.107)
S.220	Smooth start frq Fi	equency reference during smooth start			2.0	-F.020	F.020		32	?" (F.116)
S.225	Ramp factor 1 M	Itiplier for acc/dec and jerks of ramp sets 1 and 3			1.00	0.01	2.50		0.01	1324 (A.091)
S.226	Ramp factor 2 M	Itiplier for acc/dec and jerks of ramp sets 2 and 4			1.00	0.01	2.50		0.01	1327 (A.092)
S.230	Jerk acc ini 1 Je	k applied at the beginning of an acceleration with ramp set 1			0.50	0.01	10.00	m/s ³	0.01	343 (F.251)
S.231	Acceleration 1 Li	ear acceleration with ramp set 1			0.60	0.01	5.00	m/s ²	0.01	329 (F.201)
S.232	Jerk acc end 1 Je	k applied at the end of an acceleration with ramp set 1			1.40	0.01	10.00	m/s ³	0.01	344 (F.252)
S.233	Jerk dec ini 1 Je	k applied at the beginning of a deceleration with ramp set 1			1.40	0.01	10.00	m/s ³	0.01	345 (F.253)
S.234	Deceleration 1 Li	lear deceleration with ramp set 1			0.60	0.01	5.00	m/s ²	0.01	330 (F.202)
		k applied at the end of a deceleration with ramp set 1			1.00	0.01	10.00	m/s ³		346 (F.254)
		k applied at the beginning of an acceleration with ramp set 2			1.00	0.01	10.00	m/s ³		347 (F.255)
S.241	Acceleration 2 Li	lear acceleration with ramp set 2			0.60	0.01	5.00	m/s ²	0.01	331 (F.203)
		k applied at the end of an acceleration with ramp set 2			1.40	0.01	10.00	m/s³		348 (F.256)
S.243	Jerk dec ini 2 Je	k applied at the beginning of a deceleration with ramp set 2			1.40	0.01	10.00	m/s ³	0.01	349 (F.257)
224										

		PARAMETER		PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
S.244	Deceleration 2	Linear deceleration with ramp set 2			0.60	0.01	5.00	m/s ²	0.01	332 (F.204)
S.245	Jerk dec end 2	Jerk applied at the end of a deceleration with ramp set 2			1.00	0.01	10.00	m/s ³	0.01	350 (F.258)
S.250	Cont close delay	RUN contactor close delay			0.20	0	10	S	0.01	1316 (A.080)
S.251	Magnet time	Motor magnetization time			1	0	10	s	0.01	1317 (A.081)
S.252	Brake open delay	Brake contactor open delay			0.20	0	10	s	0.01	1318 (A.082)
S.253	Smooth start dly	Smooth start duration			0	0	10	S	0.01	1319 (A.083)
S.254	DCBrake stp time	Duration of 0Hz braking at stop			1	0	10	s	0.01	1320 (A.084)
S.255	Brake close dly	Brake contactor close delay			0.20	0	10	S	0.01	1321 (A.085)
S.256	Cont open delay	RUN contactor open delay			0.20	0	10	S	0.01	1322 (A.086)
S.260	Lift stop mode	Lift behavior at stop	[0] Dcb at stop	DC brake is performed after the output frequency is below P.440 threshold	1	0	1			1350 (A.220)
			[1] Normal stop	DC brake is not performed at stop						
S.300	Manual boost [%]	Manual boost at low revolutions			3.0	0.0	25.0	% of S.10	0.1	421 (P.120)
S.301	Auto boost en	Automatic boost function enabling	[0] Disable [1] Enable		0	0	1			423 (P.122)
S.310	Slip compensat	Amount of slip compensation during motoring			50	0	250	% of rated slip	1	419 (P.100)
S.311	Slip comp regen	Amount of slip compensation during regeneration			50	0	250	% of rated slip	1	500 (P.102)
S.312	Slip comp filter	Time constant of slip compensation			0.3	0	10	s	0.1	420 (P.101)
S.320	DC braking level	Current level used during DC brake at start and stop			75	0	100	% of d.950	1	449 (P.300)
S.400	Control mode	Drive control mode	[0] V/f OpenLoop	Speed control without encoder feedback Speed control with encoder feedback	0	0	1			498 (P.010)
S.401	Encoder ppr	Pulses per revolution of the encoder in use		isoasasi.	1024	1	9999		1	151 (I.501)
S.450	Spd ctrl P-gainL	Speed loop Proportional gain			2.0	0	100	%	0.1	503 (P.172)
S.451	Spd ctrl I-gainL	Speed loop Integral gain			1.0	0	100	%	0.1	504 (P.173)
S.452	Spd PI High lim	Speed PI regulator output upper limit			10	0	100	% of F.020	0.1	509 (P.176)
S.453	Spd PI Low lim	Speed PI regulator output lower limit			-10	-100	0	% of F.020	0.1	510 (P.177)
S.901	Save parameters	Save parameters	(1) (2)		(1)	(1)	(2)			800 (C.000)
1.000	Enable src	INTE Source of the Enable command of Lift Control Word	RFACE [0] False	The command is never active	2	0	25			100
1.000	Enable 310	Source of the Enable community of Entrophics World	[1] True	The command is always active						
			[2] DI 1	The command comes from DigInp1						
			[3] DI 2	The command comes from DigInp2						
			[4] DI 3	The command comes from DigInp3						
			[5] DI 4	The command comes from DigInp4						

		PARAMETER		PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
			[6] DI 5	The command comes from DigInp5						
			[7] DI 6	The command comes from DigInp6						
			[8] DI 7	The command comes from						
			ro. D. o	DigInp7						
			[9] DI 8	The command comes from DigInp8						
			[10] DI Exp 1	The command comes from ExpDI						
			[11] DI Exp 2	The command comes from ExpDI 2						
			[12] DI Exp 3	The command comes from ExpDI						
			[13] DI Exp 4	The command comes from ExpDI						
			[14] AND 1	The command comes from the output of the block AND1						
			[15] AND 2	The command comes from the output of the block AND2						
			[16] AND 3	The command comes from the output of the block AND3						
			[17] OR 1	The command comes from the output of the block OR1						
			[18] OR 2	The command comes from the output of the block OR2						
			[19] OR 3	The command comes from the output of the block OR3						
			[20] NOT 1	The command comes from the output of the block NOT1						
			[21] NOT 2	The command comes from the output of the block NOT2						
			[22] NOT 3	The command comes from the output of the block NOT3						
			[23] NOT 4	The command comes from the output of the block NOT4						
			[24] FrqSel match	The command is coming from the output of the block Freq Sel match						
			[25] ShortFloorFl	The command is the short floor flag						
	Run Fwd src	Source of the Run Forward command of LCW	As for I.000		3	0	25			101
	Run Rev src Freq Sel 1 src	Source of the Run Reverse command of LCW Source of the Frequency Selector 1 of LCW	As for I.000 As for I.000		4 5	0	25 25		$\vdash\vdash$	102 103
	Freq Sel 2 src	Source of the Frequency Selector 1 of LCW Source of the Frequency Selector 2 of LCW	As for I.000		6	0	25			104
1.005	Freq Sel 3 src	Source of the Frequency Selector 3 of LCW	As for I.000		7	0	25			105
	Freq Sel 4 src	Source of the Frequency Selector 4 of LCW	As for I.000		0	0	25			106
	Ramp Sel 1 src	Source of the Ramp Selector 1 of LCW	As for I.000		25	0	25		\vdash	107 108
	Ramp Sel 2 src Ext fault src	Source of the Ramp Selector 1 of LCW Source of the External Fault command of LCW	As for I.000 As for I.000		0	0	25 25		$\vdash\vdash\vdash$	108
	Faul reset src	Source of the External Fault command of LCW Source of the Fault Reset command of LCW	As for 1.000		9	0	25		\vdash	110
	Bak pwr act src	Source of the Backup Power Supply Active command of LCW	As for I.000		0	0	25			111
1012	Forced stop are	Source of the Forced Step command of LOW			0	0	25			185
	Forced stop src Dig output 1 cfg	Source of the Forced Stop command of LCW Digital output 1 configuration	[0] Drive Ready		51	0	25 55			112
1.100	Dig output I olg	Signal output i configuration	[1] Alarm state		01	ľ	55			
			[2] Not in alarm							
			[3] Motor run							
			[4] Motor stop							
			[5] REV rotation							
			[6] Steady state							
			[7] Ramping							
			[8] UV running							

		PARAMETER	PICK LIST							
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
			[9] Out trq>thr							
			[10] Current lim							
			[11] DC-link lim							
			[12] Limit active							
			[13] Autocapt run							
			[14] BU overload							
			[15] Neg pwrfact							
			[16] PID err ><							
			[17] PID err>thr							
			[18] PID err <thr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thr<>							
			[19] PIDer><(inh)							
			[20] PIDerr>(inh)							
			[21] PIDerr<(inh)							
			[22] FWD enc rot							
			[23] REV enc rot							
			[24] Encoder stop							
			[25] Encoder run							
			[26] Extern fault							
			[27] No ext fault							
			[28] Serial TO							
			[29] freq=thr1							
			[30] freq!=thr1							
			[31] freq>thr1							
			[32] freq <thr1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></thr1<>							
			[33] freq=thr2							
			[34] freq!=thr2							
			[35] freq>thr2							
			[36] freq <thr2< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thr2<>							
			[37] HS temp=thr							
			[38] HS temp!=thr							
			[39] HS temp>thr							
			[40] HS temp <thr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thr<>							
			[41] Output freq							
			[42] Out freq x 2							
			[43] CoastThrough							
			[44] EmgStop							
			[45] DC braking							
			[46] Drv OL status							
			[47] Drv OL warn							
			[48] Mot OL status							
			[49] Reserved							
			[50] Reserved							
			[51] Contactor	Active when the RUN contactor						
			[01] Contactor	has to be closed, either for						
				upward or downward motion						
			[52] Contactor UP	Active when the RUN contactor						
			,	has to be closed for upward						
				motion						
			[53] Contactor DW	Active when the RUN contactor						
				has to be closed for downward						
				motion						
			[54] Brake cont	Active when the mechanical brake has to be released						
			[55] Lift start	Active when the inverter output						
				bridge is enabled and DC brake						
				is not in progress						
						_			\vdash	
	Dig output 2 cfg	Digital output 2 configuration	As for I.100		32	0	55		\vdash	113
	Dig output 3 cfg	Digital output 3 configuration	As for I.100		54	0	55		\vdash	114
	Dig output 4 cfg	Digital output 4 configuration	As for I.100		2	0	55		\vdash	115
	Exp DigOut 1 cfg	Extended digital output 1 configuration	As for I.100		52	0	55		\vdash	116
		Extended digital output 2 configuration	As for I.100		53	0	55 55		\vdash	117
	Exp DigOut 3 cfg	Extended digital output 3 configuration	As for I.100	District ACM	0	0	55		\vdash	180
1.200	An in 1 Type	Setting of the Analog Input 1 type reference (voltage)	[0] +/- 10V	Bipolar ± 10V Unipolar +10V	1	0	1			118
1.004	An in 1 offset	Analog Input 1 offset	[1] 0-10V/0-20mA	οπροίαι • 10 ν	0	-99.9	99.9	%	0.1	119
	An in 1 offset	Analog Input 1 offset			1	-99.9 -9.99	99.9	_	0.1	120
	An in 1 gain	Analog Input 1 gain			0	-9.99 0	99.99	%	0.01	120
I.203 I.204	An in 1 minimum An in 1 filter	An Input 1 minimun value Time constant of digital filter on Analog input 1			0.1	0.001	0.25	% sec	0.001	121
	An in 1 fliter An in 1 DeadBand	Analog Input 1 dead band			0.1	0.001	99.9	%	0.001	182
ΔGv -		r manag mput i dada bahu				<u> </u>	30.0	,,	3.01	229

PARAMETER PICK LIST										
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
1.210	An in 2 Type	Setting of the Analog Input 2 type reference (voltage)	[0] +/- 10V [1] 0-10V/0-20mA		0	0	1			123
1.211	An in 2 offset	Analog Input 2 offset			0	-99.9	99.9	%	0.1	124
	An in 2 gain	Analog Input 2 gain			1	-9.99	9.99	%	0.01	125
	An in 2 minimum	An Input 2 minimun value Time constant of digital filter on Analog input 2			0.1	0.001	99.99	%	0.01	126 127
	An in 2 filter							sec		
	An in 2 DeadBand	Analog Input 2 dead band	[1] 0-10V/0-20mA	Bipolar ± 10V	0	0 1	99.9	%	0.1	183 128
1.220	An in 3 Type	Setting of the Analog Input 3 type reference (current)	[1] 0-10V/0-20IIIA [2] 4-20mA	Unipolar +10V	l '	'	2			120
1.221	An in 3 offset	Analog Input 3 offset	[2] 1 201131		0	-99.9	99.9	%	0.1	129
	An in 3 gain	Analog Input 3 gain	ì	ì	1	-9.99	9.99	%	0.01	130
1.223	An in 3 minimum	An Input 3 minimun value			0	0	99.99	%	0.01	131
1.224	An in 3 filter	Time constant of digital filter on Analog input 3			0.1	0.001	0.25	sec	0.001	132
1.225	An in 3 DeadBand	Analog Input 3 dead band		Output Frequency absolute	0	0	99.9	%	0.1	184 133
	Analog out 1 cfg	Analog Output 1 configuration	[1] Freq out [2] Output curr [3] Out voltage [4] Out trq (pos) [5] Out trq (abs) [6] Out trq [7] Out pwr (pos) [8] Out pwr (abs) [9] Out pwr [10] Out PF [11] Enc freq abs [12] Encoder freq [13] Freq ref [15] Load current [16] Magn current [17] PID output [18] DClink volt [19] U current	value. Output Frequency. Output Current. Output Voltage. Output Torque positive value. Output Torque absolute value. Output Torque absolute value. Output Power positive value. Output Power absolute value. Output Power. Output Power. Output Power Factor. Encoder frequency absolute value. Encoder frequency. Frequency reference absolute value. Frequency reference Load Current. Motor Magnetizing Current. PID regulator output. DC bus capacitors level. Output phase V current signal.						
			[21] W current [22] Freq ref fac	Output phase W current signal. Multiplier factor for frequency						
				reference		L				
	An out 1 offset	Analog output 1 offset			0	-9.99	9.99		0.01	134
1.302	An out 1 gain	Analog output 1 gain			1	-9.99	9.99		0.01	135
	An out 1 filter	Time constant of output filter	A - f - 1 000		0	0	2.5	sec	0.01	136
	Analog out 2 cfg	Analog Output 2 configuration	As for I.300		2	0 00	22		0.04	137
	An out 2 offset An out 2 gain	Analog output 2 offset		-	0 1	-9.99 -9.99	9.99		0.01	138 139
	An out 2 gain An out 2 filter	Analog output 2 gain Time constant of output filter			0	-9.99	2.5	sec	0.01	140
1.350	Exp an out 1 cfg	Expansion Analog Output 1 configuration (on Exp. board)	As for I.300		3	0	22	300	5.01	141
1.351	Exp AnOut 1 offs	Expansion Analog Output 1 offset		i	0	-9.99	9.99		0.01	142
	Exp AnOut 1 gain	Expansion Analog Output 1 gain			1	-9.99	9.99		0.01	143
1.353	Exp AnOut 1 filt	Time constant of output filter			0	0	2.5	sec	0.01	144
	Inp by serial en	Virtual Digital enabling			0	0	255			145
	Exp in by ser en	Expansion Virtual Digital Inputs enabling			0	0	15			146
	Out by serial en	Virtual Digital Outputs setting enabling			0	0	15			147
	Exp OutBySer en	Expansion Virtual Digital Outputs enabling			0	0	3			148
	An out by ser en	Virtual Analog Outputs enabling	(O) Di. 11	Facedonia P. 11.1	0	0	255			149
1.500	Encoder enable	Enabling of the encoder measure	[0] Disable [1] Enable	Encoder measure disabled. Encoder measure enabled.	0	0	1			150
1504	Encodor par	Encoder nameniate nulsee per revolution		-	1024	1	9999			151
1.501 230	Encoder ppr	Encoder nameplate pulses per revolution		<u> </u>	1024	'	9999			AGv -L

		PARAMETER	PICK LIST							
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Max	Unit	Variat.	IPA
1.502	Enc channels cfg	ncoder channels configuration	[0] One Channel	A (K1) encoder channel	1	0	1			152
			[1] Two Channels	A and B (K1 and K2) encoder						
1.503	Enc spd mul fact	Aultiplier factor of the encoder pulses, set in the I.501		channels	1	0.01	99.99			153
		' '	[0] 4		_					454
1.504	Enc update time E	ncoder pulses sampling time	[0] 1ms [1] 4ms		0	0	5			154
			[2] 16ms							
			[3] 0.25s [4] 1s							1
			[5] 5s							ldot
1.505	Enc power supply E	ncoder power supply level	[0] 5.2V [1] 5.6V		0	0	3			181
			[2] 8.3V							
1.500	Enc fault enable E	anhla FNC clause Facaday anhla hyani	[3] 8.7V [0] Disable	Encoder alarm disabled	0	0	1			197
1.506	Enc fault enable	hable ENC alarm, Encoder cable break	[1] Enable	Encoder alarm enabled	U	U	'			197
1.600	Serial link cfg	Serial line configuration protocol & mode		Type(DataBit) Parity (StopBit)	4	0	5		0.1	155
			[0] FoxLink 7E1	FoxLink 7E1 (7) Even (1)						
			[1] FoxLink 701	FoxLink 7O1 (7) Odd (1)						
			[2] FoxLink 701	FoxLink 7N2 (7) None (2)						1
			[3] FoxLink 8N1	FoxLink 7O1 (8) None (1)						1
			ľ.							
			[4] ModBus 8N1	Modbus 8N1 (8) None (1)						
			[5] JBus 8N1	Jbus 8N1 (8) None (1)						
1.601	Serial link bps	Serial line baudrate	[0] 600 baud [1] 1200 baud	500 baud rate 1200 baud rate	4	0	6			156
			[2] 2400 baud	2400 baud rate						
			[3] 4800 baud	4800 baud rate						1
			[4] 9600 baud [5] 19200 baud	9600 baud rate 19200 baud rate						
			ľ.							
			[6] 38400 baud	38400 baud rate						
		erial line address of the drive			1	0	99 250	maaa	1	157 158
		erial line answer delay time erial line transmission timeout			0	0	250	msec sec	0.1	159
		etting time out alarm	[0] Disable	Drive NOT in alarm and signal on	0	0	1			160
			[1] Enable	a digital output Drive IN alarm and signal on a						1
1.700	Ontion 1 type [kpansion optional 1 card type	[0] Board Off	digital output Reserved	0	0	4			161
1.700	Option 1 type E	xparision optional i card type	[1] Board master	Reserved	0	ľ	7			101
		(Note: Selected board must be installed on drive) [2	I/O Board EX	P-D6-A1R1-AGy						
		[2	[3] Board free	Reseved						1
			[4] SBI Board	SBI-PDP-AGy						1
				DBI-1 DI -AOY						
1.701	Option 2 type	Expansion optional 2 card type	[0] Board Off [1] Board master	Reserved Reserved	0	0	4			162
		(Note: Selected board must be installed on drive)								1
			[2] I/O Board [3] Board free	EXP-D6-A1R1-AGy Reserved						
			[4] SBI Board	SBI-PDP-AGy						
		BI Address	[0] 10 Kbit/s		3 5	0	255			163 164
1.751	CAN baudrate (AN Open baudraute	[0] 10 Kbit/s [1] 20 Kbit/s		3	ľ	Ü			104
			[2] 50 Kbit/s							
			[3] 125 Kbit/s [4] 250 Kbit/s							
			[5] 500 Kbit/s							
			[6] 1000 Kbit/s							
1.752	SBI Profibus mod	BI Profibus Mode	[0] Custom	Profidrive custom	2	0	4			165
			[1] PPO1 [2] PPO2	Profidrive type 1 Profidrive type 2						
			[3] PPO3	Profidrive type 3						
1 75º	SBI CAN mode	plaction of the Rue protocol	[4] PPO4 [0] OFF	Profidrive type 4 None	0	0	2			166
1.753	SBI CAN mode	Selection of the Bus protocol	[1] CAN Open	CAN Open protocol	Ü	ľ	_			100
1754	Due file halder	Shou times for Due Foult Al-	[2] DeviceNet	DeviceNet protocol	0.0	0.4	60.0		0.4	170
		elay time for Bus Fault Alarm ford 0 from SBI to drive			0.0	0.1	60.0 1999	sec	0.1	179 167
1.761	SBI to Drv W 1	ord 1 from SBI to drive			0	0	1999			168
		Mord 2 from SBI to drive Mord 3 from SBI to drive	-		0	0	1999 1999	_	-	169 170
1.764	SBI to Drv W 4	Nord 4 from SBI to drive			0	0	1999			171
		ord 5 from SBI to drive ord 0 from drive to SBI			0	0	1999 1999			172 173
		A ord 1 from drive to SBI			2	0	1999			173

		PARAMETER		PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
	Drv to SBI W 2	Word 2 from drive to SBI			3	0	1999			175
	Drv to SBI W 3	Word 3 from drive to SBI			4	0	1999			176
	Drv to SBI W 4	Word 4 from drive to SBI			5	0	1999			177
1.775 L	Drv to SBI W 5	Word 5 from drive to SBI	& RAMP		6	0	1999			178
F.000 N	Motorpot ref	Motopot reference (it can be set using up and down commands)	W NAME		0	0	F.020	Hz	0.01	300
F.010 N	Mp Acc/Dec time	Motorpot Accel. and Decel. ramp time			10	0.1	999.9	sec	0.1	301
	Motorpot offset	Motopotentiometer minimum reference			0	0	F.020	Hz	0.1	302
F.012	Mp output mode	Unipolar / bipolar Motorpotentiometer	[0] Unipolar [1] Bipolar		0	0	1			303
F013 N	Mp auto save	Motopotenziometer auto save function	[0] Disable		1	0	1			304
1.010	inp date dave	motopotonizioni date dave iditation	[1] Enable							
F.014 M	MpRef at stop	Behavior of the frequency reference from Motorpotentiometer during a Stop sequence	[0] Last value	Mot. reference will retain its current value Mot. reference will ramp down to zero, following the deceleration ramp in use	0	0	1			351
F.020 N	Max ref freq	Motor maximum frequency value (for both directions)			50	25	250	Hz	0.1	305
	Min ref freq	Minimum frequency value			0	0	F.020	Hz	0.1	306
F.050 F	Ref 1 channel	Source of the Reference 1	[0] Null	Null	4	4	4			307
			[1] Analog inp 1	Analog input 1 Analog input 2						
			[2] Analog inp 2 [3] Freq ref x	Frequency reference F.100 (S.203)						
			[4] Multispeed [5] Motorpotent	Multi frequncies Motorpotientometer reference						
			[6] Analog inp 3 [7] Encoder [8] Profidrive	Analog input 3 Encoder signal Reference by Profibus						
F 051 F	Ref 2 channel	Source of the Reference 2	[0] Null	Null	0	0	8			308
	10. 2 0.0	554.55 5. 4.5 1.6.5.555 2	[1] Analog inp 1	Analog input 1						
			[2] Analog inp 2	Analog input 2						
			[3] Freq ref x [4] Multispeed	Frequency reference F.101 Multispeed						
			[5] Motorpotent	Motorpotientometer reference						
			[6] Analog inp 3[7] Encoder[8] Profidrive	Analog input 3 Encoder signal Reference by Profibus						
F.060 N	MitFrq channel 1	Source of the Multispeed 1		As for F.050, Reference 1 source	3	0	8			309
F.061 N	MltFrq channel 2	Source of the Multispeed 2		As for F.051, Reference 2 source	3	0	8			310
F.080 F	FregRef fac src	Frequency reference multiplier factor source	[0] Null	Null	0	0	3			342
F.060 F	rieqkei iac sic	rrequency reference multiplier factor source	[1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Analog input 1 Analog input 2 Analog input 2	O		3			342
	Frequency ref 0	Digital Reference frequency 0			10	-F.020	F.020	Hz	0.1	311
	Frequency ref 1	Digital Reference frequency 1	<u> </u>		50	-F.020	F.020	Hz	0.1	312
-	Frequency ref 2	Digital Reference frequency 2 Digital Reference frequency 3			0	-F.020 -F.020	F.020 F.020	Hz Hz	0.1	313 314
	Frequency ref 3 Frequency ref 4	Digital Reference frequency 3 Digital Reference frequency 4			0	-F.020	F.020	Hz	0.1	315
	Frequency ref 5	Digital Reference frequency 5			0	-F.020	F.020	Hz	0.1	316
	Frequency ref 6	Digital Reference frequency 6			0	-F.020	F.020	Hz	0.1	317
F.107 F	Frequency ref 7	Digital Reference frequency 7			0	-F.020	F.020	Hz	0.1	318
	Frequency ref 8	Digital Reference frequency 8			0	-F.020	F.020	Hz	0.1	319
	Frequency ref 9	Digital Reference frequency 9			0	-F.020 -F.020	F.020 F.020	Hz Hz	0.1	320 321
	Frequency ref 10 Frequency ref 11	Digital Reference frequency 10 Digital Reference frequency 11			0	-F.020	F.020	Hz	0.1	321
	Frequency ref 12	Digital Reference frequency 12			0	-F.020	F.020	Hz	0.1	323
	Frequency ref 13	Digital Reference frequency 13			0	-F.020	F.020	Hz	0.1	324
	Frequency ref 14	Digital Reference frequency 14			0	-F.020	F.020	Hz	0.1	325
F.115 E	BakPwr max freq	Digital refer frequency 15. When in backup power mode, it defines the upper limit of the inverter output frequency			5	-F.020	F.020	Hz	0.1	326
F.116	Smooth start frq	Frequency reference during smooth start			2	-F.020	F.020	Hz	0.1	327
-	Acceleration 1	Linear acceleration with ramp set 1			0.6	0.01	5.0	m/s ²	0.01	329
F.202	Deceleration 1	Linear deceleration with ramp set 1			0.6	0.01	5.0	m/s ²	0.01	330

		PARAMETER	PICK LIST							
Code	LCD Display	DESCRIPTION	LCD Selection		Def.	Min	Мах	Unit	Variat.	IPA
F.203	Acceleration 2	Linear acceleration with ramp set 2			0.6	0.01	5.0	m/s ²	0.01	331
F.204	Deceleration 2	Linear deceleration with ramp set 2			0.6	0.01	5.0	m/s ²	0.01	332
F.205	Acceleration 3	Linear acceleration with ramp set 3			0.6	0.01	5.0	m/s ²	0.01	333
F.206	Deceleration 3	Linear deceleration with ramp set 3			0.6	0.01	5.0	m/s ²	0.01	334
F.207	Acceleration 4	Linear acceleration with ramp set 4			0.6	0.01	5.0	m/s ²	0.01	335
F.208	Deceleration 4	Linear deceleration with ramp set 4			0.6	0.01	5.0	m/s ²	0.01	336
F.250	Ramp S-shape	S-shaped ramp enable	[0] Disable [1] Enable	Linear ramps S-shaped ramps	1	0	1			337
F.251	Jerk acc ini 1	Jerk applied at the beginning of an acceleration with ramp sets 1 and 3			1.00	0.01	10.00	m/s ³	0.01	343
F.252	Jerk acc end 1	Jerk applied at the end of an acceleration with ramp sets 1 and 3			1.40	0.01	10.00	m/s ³	0.01	344
F.253	Jerk dec ini 1	Jerk applied at the beginning of a deceleration with ramp sets 1 and 3			1.40	0.01	10.00	m/s ³	0.01	345
F.254	Jerk dec end 1	Jerk applied at the end of a deceleration with ramp sets 1 and 3			1.00	0.01	10.00	m/s ³	0.01	346
F.255	Jerk acc ini 2	Jerk applied at the beginning of an acceleration with ramp sets 2 and 4			1.00	0.01	10.00	m/s ³	0.01	347
F.256	Jerk acc end 2	Jerk applied at the end of an acceleration with ramp sets 2 and			1.40	0.01	10.00	m/s ³	0.01	348
F.257	Jerk dec ini 2	Jerk applied at the beginning of a deceleration with ramp sets 2			1.40	0.01	10.00	m/s ³	0.01	349
F.258	Jerk dec end 2	and 4 Jerk applied at the end of a deceleration with ramp sets 2 and 4			1.00	0.01	10.00	m/s ³	0.01	350
F.260	Ramp extens src	Source for the Ramp time extension function	[0] Null	Null	0	0	3			338
1.200	Tramp extens sic	Source for the reality time exension function	[1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Analog input 1 Analog input 2 Analog input 3						000
F.270	Jump amplitude	Jump frequencies hysteresis	2.7	3 7	0	0	100	Hz	0.1	339
F.271	Jump frequency 1	Jump frequency 1			0	0	250	Hz	0.1	340
F.272	Jump frequency 2	Jump frequency 2			0	0	250	Hz	0.1	341
			METER							
P.000	Cmd source sel	It defines the use of START and STOP commands	[0] CtrlWordOnly [1] CtlWrd & kpd		0	0	1			400
P.002	Reversal enable	Reversal enabling	[0] Disable	Disabling reverse rotation	1	0	1			402
			[1] Enable	Enabling reverse rotation						
P.003	Safety	Safe start definition	[0] OFF	START allowed with RUN temirnal connected at the power on	1	0	1			403
			[1] ON	START not allowed with RUN temirnal connected at the power on						
P.010	Control mode	Drive control mode	[0] V/f open loop	V/f control w/o encoder feedback	0	0	1			498
			[1] V/f clsd loop	V/f control with encoder feedback						
P.020	Mains voltage	Rated value of the line voltage	230 380		400	230	480	V		404
			400							
			420 440							
			460							
			480							
P.021	Mains frequency	Rated value of the line voltage frequency	50 60		50	50	60	Hz		405
P.040	Motor rated curr	Rated current of the motor			(*)	(*)	(*)	Α	0.1	406
P.041	Motor pole pairs	Pole Pairs of the motor			2	1	60			407
	Motor power fact	Motor power factor			(*)	0.01	1		0.01	408
	Motor stator R	Measurement of the stator resistance of the motor			(*)	0	99.99	ohm	0.01	409
P.044	Motor cooling	Motor type cooling	[0] Natural [1] Forced	Self ventilated Assisted ventilation	0	0	1			410
	Motor thermal K	Motor thermal constant			30	1	120	min		411
P.060	V/f shape	V/F Curve Type	[0] Custom	V/F curve defined by the user	1	0	2			412
			[1] Linear [2] Quadratic	Linear characteristic Quadratic characteristic						
P.061	Base voltage	Motor base (rated) voltage			380	50	528	V	1	413
	Base frequency	Base frequency			50	25	500	Hz	0.1	414

		PARAMETER PICK LIST								
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
P.063	V/f interm volt	//F intermediate voltage			190	0	P.061	V	1	415
P.064	V/f interm freq	//F intermediate frequency			25	1.0	P.062	Hz	0.1	416
P.080	Max output freq	Maximum output frequency			110	0	110	% of F.020	1	417
P.081	Min output freq	Minimum output frequency			0.0	0.0	25.0	% of F.020	0.1	418
P.100	Slip compensat	Amount of slip compensation during motoring			50	0	250	%	1	419
P.101	Slip comp filter	Time constant of slip compensation			0.3	0	10	sec	0.1	420 500
	Slip comp regen	Amount of slip compensation during regeneration forque boost level			50 3	0	250 25	% % of	1	421
P.120	Manual boost [%]	lorque boost level			3	Ů	25	% 01 P.061	'	421
P.121	Boost factor src	Boost level source	[0] Null [1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Null Analog input 1 Analog input 2 Analog input 3	0	0	3			422
P.122	Auto boost en	Automatic boost function enabling	[0] Disable	Automatic boost function	0	0	1			423
P.140	Magn curr gain	Magnetizing current regulator gain	[1] Enable	Automatic boost function enabled	0	0	100	%	0.1	424
P.160	Osc damping gain	Damping gain			10	0	100		1	425
P.170	Spd ctrl P-gainL	Speed loop proportional gain (low speed)			2.0	0.0	100.0	%	0.1	501
P.171	Spd ctrl I-gainL	Speed loop integral gain (low speed)	 		1.0	0.0	100.0	%	0.1	502
	Spd ctrl P-gainH	Speed loop proportional gain (high speed)			2.0	0.0	100.0	%	0.1	503
	Spd ctrl I-gainH	Speed loop integral gain (high speed)			1.0	0.0	100.0	%	0.1	504
P.174	Spd gain thr L	Speed loop gain scheduling low threshold			0.0	0.0	F.020	Hz	0.1	507
P.175	Spd gain thr H	Speed loop gain scheduling high threshold			0.0	0.0	F.020	Hz	0.1	508
	Spd PI High lim	Speed regulator High limit			10.0	0.0	100.0	% of F.020	0.1	509
	Spd PI Low lim	Speed regulator Low limit			-10.0	-100.0	0.0	% of F.020	0.1	510
P.178	SpdPl lim FacSrc	Speed regulator limits factor source	[0] Null [1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Null Analog input 1 Analog input 2 Analog input 3	0	0	3			511
P.180	SW clamp enable	Current clamp enable	[0] Disable		1	0	1			426
P.181	Clamp alm HldOff	Holf off time for current clamp alarm. Set to maximum (25.5s) to disable the alarm	[1] Enable		5.0	0	25.5	S	0.1	512
P.200	Ramp CurLim mode	Enable current limitation during ramp	[0] None [1] PI Limitator		0	0	2			427
D 201	Accel curr limit	Current limit in acceleration phase	[2] Ramp freeze		(*)	20	(*)	% of I		428
	En lim in steady	Enable current limitation in steady state	[0] Disable		0	0	1	nom		429
P.203	Curr lim steady	Current limit at constant speed	[1] Enable		(*)	20	(*)	% of I	1	430
P.204	Curr ctrl P-gain	Current limiter proportional gain			10.0	0.1	100.0	nom		431
P.205	Curr ctrl I-gain	Current limiter integral gain			30.0	0.0	100.0	%	0.1	432
P.206	Curr ctr feedfwd	Current limiter feed-forward			0	0	250	%	1	433
P.207	Decel curr limit	Current limit in deceleration phase	 		(*)	20	(*)	% of I	1	494
	En DC link ctrl	Stall prevention during dec. for overvoltage	[0] None [1] PI Limitator [2] Ramp freeze	None PI Limit regulator Dn/Off Ramp	0	0	2	nom		434
P.221	DC-Ink ctr Pgain	DC link voltage limiter proportional gain			3.0	0.1	100.0	%	0.1	435
P.222	DC-lnk ctr Igain	DC link voltage limiter integral gain			10.0	0.0	100.0	%	0.1	436
P.223 P.240	DC-link ctr FF OverTorque mode	DC link voltage limiter feed-forward Dvertorque mode	[0] No Alm,Chk on	Overtorque detection always active and Over-torque alarm	0	0	250 3	%	1	437 438
			[1] No Alm,Chk ss	disabled. 1: Overtorque detection in steady state and Over-torque alarm disabled. 2: Overtorque detection always						
			[3] Alm steady st	active and Over-torque alarm enabled. 3: Overtorque detection in steady state and Over-torque alarm						
P.241	OT curr lim thr	Current limit for overtorque		enabled	110	20	200	%	1	439
\vdash	OT level fac src	Dvertorque level factor source	[0] Null [1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Null Analog input 1 Analog input 2 Analog input 3	0	0	3			440
P.243	OT signal delay	Delay time for overtorque signaling			0.1	0.1	25	sec	0.1	441
P.260	Motor OL prot en	Enabling of motor overload protection	[0] Disable [1] Enable		1	0	1			444
	•	•		•		-	-			

	PARAMETER		PICK LIST							
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
P.280	BU configuration	Braking unit configuration	[0] BU disabled [1] BU en OL dis	BU disabled BU enabled & Overload disable	1	0	2			445
D.004	Dod o o o o o	Oberts of a Charles with a	[2] BU en OL en	BU & Overload enabled	(+)	4	050	- lear	_	440
	Brake res value Brake res power	Ohmic value of braking resistor Braking resistor power			(*)	0.01	250 25	ohm kW	0.01	446 447
P.283	Br res thermal K	Braking resistor thermal constant			(*)	1	250	sec	1	448
P.300	DC braking level	DC braking level			75	0	100	% of I nom	1	449
	DCB lev fac src	DC braking level factor source	[0] Null [1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Null Analog input 1 Analog input 2 Analog input 3	0	0	3			450
P.321	Autocapture Ilim	Catch on flight current limit			120	20	(*)	% of I non	1	456
P.322	Demagnetiz time	Demagnetization minimun time			(*)	0.01	10	sec	0.01	457
P.323	Autocap f scan t	Frequency scanning time during Pick Up			1 0.2	0.1	25 25	sec V	0.1	458 459
P.324 P.340	Autocap V scan t Undervoltage thr	Voltage scanning time during Pick Up Undervoltage threshold	—		0.2	0.1	80	v % of P.020	1	462
P.341	Max pwrloss time	Restart time from undervoltage	-		0	0	25	sec	0.1	463
	UV alarm storage	Enabling of undervoltage alarm storage	[0] Disable		1	0	1			464
	o v alaim olorago	2. a.	[1] Enable							
P.343	UV Trip Mode	Undervoltage tripping mode	[0] Disabled [1] CoastThrough	Function disabled Kinetic energy recovering	0	0	2			491
			[2] Emg stop	Emergency stop mode						
P.360	OV prevention	Automatic PickUp enabling after Overvoltage	[0] Disable		0	0	1			465
D000	A . (((N. observed a franchistation of	[1] Enable		0	_	255		\vdash	466
P.380 P.381	Autoreset attmps Autoreset clear	Number of autoreset attempts En. automatic reset of autorestart attempts			0 10	0	250	min	1	467
P.382	Autoreset delay	Autoreset time delay			5	0.1	50	sec	0.1	468
P.383	Autores flt rly	Alarm relay contacts behaviour during autoreset	[0] OFF		1	0	1	000		469
	r tator oo iit iiy	r tanning actions	[1] ON							
P.400	Ext fault mode	External fault detection mode	[0] Alm alw,No AR [1] Alm run,No AR [2] Alm alw, ARes [3] Alm run, ARes	Drive in alarm. Alarm always active. Alarm autoreset is not possible. Drive in alarm. Alarm active only with running motor. Alarm autoreset is not possible. Drive in alarm. Alarm always active. Alarm autoreset is possible. Drive in alarm. Alarm active only with running motor. Alarm autoreset is possible.	0	0	3			492
P.410	Ph Loss detec en	Phase Loss detection enabling	[0] Disable [1] Enable		1	0	1			492
P.420	Volt reduc mode	Voltage reduction mode	[0] Always	Always	0	0	1			471
D 404), i		[1] Steady state	Costant speed only	400	40	400	/ -f D 004		470
	V reduction fact V fact mult src	Course of voltage reduction factor multiplier	[0] Null	Null	100	10 0	100 3	% of P.061	1	472 473
		Source of voltage reduction factor multiplier	[1] Analog inp 1 [2] Analog inp 2 [3] Analog inp 3	Analog input 1 Analog input 2 Analog input 3						
	Frequency thr 1	Frequency 1 level detection	 		0.5	0	F.020 F.020	Hz Hz	0.1	474 475
P.441 P.442	Freq prog 1 hyst Frequency thr 2	Hysteresis amplitude related to P-420 Frequency 2 level detection			0.2	0	F.020	Hz Hz	0.1	475
		Hysteresis amplitude related to P-422	-		0.5	0	F.020	Hz	0.1	477
P.460	Const speed tol	Tolerance at constant speed			0.0	0	25	Hz	0.1	478
P.461		Ramp end signalling delay			0.1	0	25	sec	0.1	479
	Heatsnk temp lev	Heatsink temperature signalling level			70	10	110	°C	1	480
P.481	Heatsnk temp hys	Hysteresis band related to P.480			5	0	10	°C	1	481
P.500	Switching freq	Modulation frequency	[0] 1kHz [1] 2kHz [2] 3kHz [3] 4kHz [4] 6kHz [6] 10kHz [7] 12kHz [8] 14kHz [9] 16kHz [10] 18kHz		(*)	0	(*)			482

		PICK LIST								
Code	LCD Display	PARAMETER DESCRIPTION	LCD Selection		Def.	Min	Мах	Unit	Variat.	IPA
P.501	Sw freq reduc en	Enabling of switching frequency reduction	[0] Disable [1] Enable		0	0	1			483
P.502	Min switch freq	Minimum switching frequency	As for P.500		(*)	0	P.500			495
P.520	Overmod max lev	Overmodulation level			0	0	100	%	1	484
P.540	Out VIt auto adj	Automatic adjustment of output voltage			1	0	1			485
P.560	Deadtime cmp lev	Dead times compensation limit			(*)	0	255			486
P.561 P.580	Deadtime cmp slp Startup display	Dead times compensation slope IPA of the parameter to be displayed at power on			(*)	1	255 1999			487 488
P.600 P.998	Speed dsply fact Param access lev	Speed conversion constant for display Access level			10.00	0.01	99.99		0.01	489 499
P.999	Param prot code	Parameters protection code	1 Protection disable 1 Protection enabled (*) = only with motor stopped 2 Protection enabled (*) = only with motor stopped	Stopped motor: possibility to write all parameters. Running motor: some parameters are writing protected (IPA in bold) All parameters are writing protected excepted: - F000, F100F116, multispeed function parameters - P999 Param prot code - C000 Save parameter (*) - C020 Alarm clear - H500H511, serial line commands. All parameters are writing protected excepted: - P999 Param prot code - C000 Save parameter (*) - C020 Alarm clear - H500H511, serial line commands.	0	0	3			490
				Stopped motor: possibility to write all parameters. Running motor: some parameters are writing protected (IPA in bold) Possibility to execute Save parameter also with running motor.						
			CATION							
A.000	PID mode	PID mode	[0] Disable [1] Freq sum	Null PID out in sum with ramp out ref (Feed forward)	0	0	6			1200
			[2] Freq direct	PID out not in sum with ramp out ref (no Feed forward)						
			[3] Volt sum	PID out in sum with voltage ref from V/f curve (Feed forward)						
			[4] Volt direct	PID out not in sum with voltage ref from V/f curve (no Feed forward)						
			[5] Stand alone	PID function as generic control (only with drive in RUN)						
			[6] St-Al always	PID function as generic control (any drive status)						
A.001	PID ref sel	PID reference selector	[0] Null	Null	0	0	7			1201
I	I		[1] Analog inp 1	Analog input 1		l	l			

		PARAMETER PICK LIST				PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA		
			[2] Analog inp 2	Analog input 2								
			[3] Analog inp 3 [4] Frequency ref	Analog input 3 Frequency reference						1		
			[5] Ramp output	Ramp output								
			[6] Digital ref	Internal reference								
			[7] Encoder freq	Encoder frequency								
A.002	PID fbk sel	PID feedback selector	[0] Null	Null	0	0	7			1202		
			[1] Analog inp 1	Analog input 1								
			[2] Analog inp 2 [3] Analog inp 3	Analog input 2 Analog input 3								
			[4] Encoder freq	Encoder frequency								
			[5] Output curr	Output peak current						1		
			[6] Output torque	Output torque						1		
			[7] Output power	Output power								
	PID digital ref	PID digital reference	ro. 41		0	-100	100	%	0.1	1203		
A.004	PID activat mode	PID active in steady state only	[0] Always [1] Steady state		0	0	1			1204		
Δ 005	PID-Encoder sync	Enabling of encoder / PID synchronism	[0] Disable		0	0	1			1205		
A.000	I ID-Elicodei sylic	Enabling of encoder / Fib synchronism	[1] Enable			ľ				.200		
A.006	PID err sign rev	Error sign reversal	[0] Disable		0	0	1			1206		
			[1] Enable									
A.007	PIDInteg init en	Integral term initialization at start	[0] Disable		0	0	1			1207		
A 000	DID undata tica a	PID undating time	[1] Enable		0	0	2.5	sec	0.01	1208		
	PID update time PID Prop gain 1	PID updating time Proportional term gain 1			0	0	99.99	260	0.01	1208		
	PID Prop gain 1	Integral action time 1			99.99	0	99.99		0.01	1210		
	PID Deriv gain 1	Derivative action time 1			0	0	99.99		0.01	1211		
	PID Prop gain 2	Proportional term gain 2			0	0	99.99		0.01	1212		
	PID Int tconst 2	Integral action time 2			99.99	0	99.99		0.01	1213		
	PID Deriv gain 2	Derivative action time 2			0	0	99.99	0/	0.01	1214		
	PID high limit PID low limit	PID output upper limit			100 -100	-100 -100	100 100	%	0.1	1215 1216		
	PID low limit	PID output lower limit PID max. positive error			5	0.1	100	%	0.1	1217		
	PID min neg err	PID max. positive error			5	0.1	100	%	0.1	1218		
A.080	Cont close delay	RUN contactor close delay			0.20	0	10	S	0.01	1316		
A.081	Magnet time	Motor magnetization time			1	0	10	S	0.01	1317		
A.082	Brake open delay	Brake contactor open delay			0.20	0	10	S	0.01	1318		
A.083	Smooth start dly	Smooth start duration			1	0	10 10	S	0.01	1319 1320		
A.084 A.085	DCBrake stp time Brake close dly	Duration of 0Hz braking at stop Brake contactor close delay			0.20	0	10	S S	0.01	1321		
A.086	Cont open delay	RUN contactor open delay			0.20	0	10	s	0.01	1322		
A.087	Current pres thr	Current threshold for inverter output phases check			10	0	100	%	1	1325		
A.088	Sel match code	Code to be compared to the status of Freq selectors			0	0	15			1326		
A.090	Car max speed	Speed of the lift car when the inverter output frequency is equal			0.50	0.01	5.00	m/s	0.01	1323		
A.091	Ramp factor 1	to P.062 multiplier for acc/dec and jerks of ramp sets 1 and 3			1.00	0.01	2.50		0.01	1324		
A.092	Ramp factor 2	multiplier for acc/dec and jerks of ramp sets 2 and 4			1.00	0.01	2.50		0.01	1327		
	·	, , ,										
A.220	Lift stop mode	Lift behavior at stop	[0] Dcb at stop	DC brake is performed after the output frequency is below P.440 threshold	1	0	1			1350		
			[1] Normal stop	DC brake is not performed at stop								
A.300	AND1 In 1 src	Source of In 1 of logic block AND1	see list of 1.000		0	0	25			1355		
	AND1 In 2 src	Source of In 2 of logic block AND1	see list of 1.000		0	0	25			1356		
	AND2 In 1 src	Source of In 1 of logic block AND2	see list of I.000		0	0	25			1357		
	AND2 In 2 src AND3 In 1 src	Source of In 2 of logic block AND2 Source of In 1 of logic block AND3	see list of 1.000 see list of 1.000		0	0	25 25			1358 1359		
	AND3 In 2 src	Source of In 2 of logic block AND3	see list of 1.000		0	0	25			1360		
A.306	OR1 In 1 src	Source of In 1 of logic block OR1	see list of I.000		0	0	25			1361		
A.307	OR1 In 2 src	Source of ln 2 of logic block OR1	see list of 1.000		0	0	25			1362		
	OR2 In 1 src	Source of In 1 of logic block OR2	see list of 1.000		0	0	25			1363		
	OR2 In 2 src	Source of In 2 of logic block OR2	see list of 1.000		0	0	25			1364		
	OR3 In 1 src	Source of In 1 of logic block OR3	see list of 1.000 see list of 1.000		0	0	25 25	-		1365 1366		
	OR3 In 2 src NOT1 In src	Source of In 2 of logic block OR3 Source of Input of logic block NOT1	see list of 1.000		0	0	25 25			1367		
	NOT2 In src	Source of Input of logic block NOT1 Source of Input of logic block NOT2	see list of 1.000		0	0	25			1368		
	NOT3 In src	Source of Input of logic block NOT3	see list of I.000		0	0	25			1369		
	NOT4 In src	Source of Input of logic block NOT4	see list of 1.000		0	0	25			1370		
										\vdash		
		<u> </u>										

		PARAMETER	PICK LIST							
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Мах	Unit	Variat.	IPA
		COM	MAND							
C.000	Save parameters	Save parameters command	(1)	No action. Save parameters command.	(1)	(1)	(2)			800
C.001	Recall param	Recall last set of saved parameters	(1) (2)	No action. Recall last set of saved parameters.	(1)	(1)	(2)			801
C.002	Load default	Recall of the factory parameters.	(1) (2)	No action. Load default parameters.	(1)	(1)	(2)			802
C.020	Alarm clear	Reset of the the Alarm List register	(1) (2)	No action. Clear alarm register command.	(1)	(1)	(2)			803
C.040	Recall key prog	Recall of the parameters in the external key	(1) (2)	No action. Recall parameter from PRG-KEY key.	(1)	(1)	(2)			804
C.041	Save pars to key	Storage of the inverter parameter on the external key	(1) (2)	No action. Storage of parameters to PRG- KEY key.	(1)	(1)	(2)			805
C.050	Rst mdplc prec run	Reset mdplc error at previous run	(1) (2)	No action. Reset mdplc error	(1)	(1)	(2)			809
	Calculate space	Off line space evaluation	(1) (2)	No action. Start	(1)	(1)	(2)			809
C.070	Recall kbg prog	Recall of parameters from LCD keypad	(1)	No action. Recall pars from keypad	(1)	(1)	(2)			809
	Save pars to kbg	Storage of parameters into LCD keypad	(1) (2)	No action. Store pars into keypad	(1)	(1)	(2)			810
C.100	Measure stator R	Motor Autotune command	(1) (2) DDEN	No action. Autotune command.	(1)	(1)	(2)			806
	This menu is not avai	lable on the keypad. The setting and the reading of the paramete		. can be performed exclusive	lv via se	rial line	or throu	ıah SBI d	ard.	
11.000	1		1	, ,				J		1000
H.000 H.001		Virtual digital command Exp virtual digital command			0	0	255 255			1000
H.010		Virtual digital state			0	0	255			1002
H.011		Exp Virtual digital state			0	0	255			1003
H.020		Virtual An Output 1			0	-32768	32767			1004
H.021		Virtual An Output 2			0	-32768	32767			1005
H.022 H.030		Exp Virtual An Output 1 Profidrive Control word (see Profibus instruction manual)			0	-32768 0	32767 65535			1006 1007
H.031		Profidrive Status word (see Profibus instruction manual)			0	0	65535			1008
H.032		Profidrive reference (see Profibus instruction manual)			0	-16384	16383			1040
H.033 H.034		Profidrive actual reference (see Profibus instruction manual) Drive status			0	-16384 0	16383 65535			1041
H.040		Progress			0	0	100			1009
H.050	ĺ	Drive output frequency at 32bit (LSW) (d.000)			0	- 2 ³¹	2 ³¹ -1			1010
H.051		Drive output frequency at 32bit (MSW) (d.000)			0	- 2 ³¹	2 ³¹ -1			1011
H.052		Drive reference frequency at 32bit (LSW) (d.001)			0	- 2 ³¹	2 ³¹ -1			1012
H.053		Drive reference frequency at 32bit (MSW) (d.001)			0	- 2 ³¹	2 ³¹ -1			1013
H.054 H.055		Output speed (d.000)*(P.600) at 32bit (LSW) (d.007) Output speed (d.000)*(P600)at 32bit (MSW) (d.007)			0	- 2 ³¹	2 ³¹ -1	_		1014
H.056		Speed Ref (d.001)*(P.600) at 32bit (LSW) (d.008)			0	- 2 ³¹	2 ³¹ -1	_		1016
H.057		Speed Ref (d.001)*(P.600) at 32bit (MSW) (d.008)			0	- 2 ³¹	2 ³¹ -1	_		1017
H.058		Encoder freq at 32bit (LSW) (d.301)			0	- 2 ³¹	2 ³¹ -1			1018
H.059		Encoder freq at 32bit (MSW) (d.301)			0	- 2 ³¹	2 ³¹ -1			1019
H.060		Encoder speed (d.000)*(P.600) at 32bit (LSW) (d.302)			0	- 2 ³¹	2 ³¹ -1			1044
H.061		Encoder speed (d.000)*(P.600) at 32bit (MSW) (d.302)			0	- 2 ³¹	2 31 -1			1045
H.062		Bitwise reading of active alarms (bit 0 to 15). Each bit is associated to a specific alarm, according to table 9.3.1.			0	0	2 ³¹ -1			1060

		PARAMETER		PICK LIST						
Code	LCD Display	DESCRIPTION	LCD Selection	Description	Def.	Min	Max	Unit	Variat.	IPA
H.063		Bitwise reading of active alarms (bit 16 to 31). Each bit is associated to a specific alarm, according to table 9.3.1.			0	0	2 ³¹ -1			1061
H.100		Remote Digital Inputs (015)			0	0	65535			1021
H.101		Remote Digital Inputs (1631)			0	0	65535			1022
H.110		Remote Digital Outputs (015)			0	0	65535			1023
H.111		Remote Digital Outputs (1631)			0	0	65535			1024
H.120		Remote Analog input 1			0	-32768	32767			1025
H.121		Remote Analog input 2			0	-32768	32767			1026
H.130		Remote Analog output 1			0	-32768	32767			1027
H.131		Remote Analog output 2			0	-32768	32767			1028
H.500		Hardware reset			0	0	1			1029
H.501		Alarm reset			0	0	1			1030
H.502		Coast to stop			0	0	1			1031
H.503		Stop with ramp			0	0	1			1032
H.504		Clockwise Start			0	0	1			1033
H.505		Anti-clockwise Start			0	0	1			1034
H.506		Clockwise Jog			0	0	1			1035
H.507		Anti-clockwise Jog			0	0	1			1036
H.508	·	Clockwise Flying restart			0	0	1			1037
H.509		Anti-clockwise Flying restart			0	0	1			1038
H.510		DC Brake			0	0	1			1039

Note:	

GEFRAN BENELUX

Lammerdries, 14A B-2250 OLEN Ph. +32 (0) 14248181 Fax. +32 (0) 14248180 info@gefran.be

GEFRAN BRASIL ELETROELETRÔNICA

Avenida Dr. Altino Arantes, 377/379 Vila Clementino 04042-032 SÂO PAULO - SP Ph. +55 (0) 1155851133 Fax +55 (0) 1155851425 gefran@gefran.com.br

GEFRAN DEUTSCHLAND

Philipp-Reis-Straße 9a 63500 SELIGENSTADT Ph. +49 (0) 61828090 Fax +49 (0) 6182809222 vertrieb@gefran.de

GEFRAN SUISSE SA

Rue Fritz Courvoisier 40 2302 La Chaux-de-Fonds Ph. +41 (0) 329684955 Fax +41 (0) 329683574 office@gefran.ch

GEFRAN - FRANCE

4, rue Jean Desparmet - BP 8237 69355 LYON Cedex 08 Ph. +33 (0) 478770300 Fax +33 (0) 478770320 commercial@gefran.fr

GEFRAN INC

Automation and Sensors 8 Lowell Avenue WINCHESTER - MA 01890 Toll Free 1-888-888-4474 Ph. +1 (781) 7295249 Fax +1 (781) 7291468 info@gefranisi.com

GEFRAN INC

Motion Control
14201 D South Lakes Drive
NC 28273 - Charlotte
Ph. +1 704 3290200
Fax +1 704 3290217
salescontact@sieiamerica

SIEI AREG - GERMANY

Zachersweg, 17 D 74376 - Gemmrigheim Ph. +49 7143 9730 Fax +49 7143 97397 info@sieiareg.de

GEFRAN SIEI - UK Ltd.

7 Pearson Road, Central Park TELFORD, TF2 9TX Ph. +44 (0) 845 2604555 Fax +44 (0) 845 2604556 sales@gefran.co.uk

GEFRAN SIEI - ASIA

Blk. 30 Loyang way 03-19 Loyang Industrial Estate 508769 SINGAPORE Ph. +65 6 8418300 Fax. +65 6 7428300 info@sieiasia.com.sg

GEFRAN SIEI Electric Pte Ltd

Block B, Gr.Fir, No.155, Fu Te Xi Yi Road, Wai Gao Qiao Trade Zone 200131 Shanghai Ph. +86 21 5866 7816 Ph. +86 21 5866 1555 gefransh@online.sh.cn

SIEI DRIVES TECHNOLOGY

No.1265, B1, Hong De Road, Jia Ding District 201821 Shanghai Ph. +86 21 69169898 Fax +86 21 69169333 info@sieiasia.com.cn

GEFRAN

GEFRAN S.p.A.

www.gefran.com

Via Sebina 74 25050 Provaglio d'Iseo (BS) ITALY Ph. +39 030 98881 Fax +39 030 9839063 info@gefran.com

Drive & Motion Control Unit

Via Carducci 24 21040 Gerenzano [VA] ITALY Ph. +39 02 967601 Fax +39 02 9682653 infomotion@gefran.com

Technical Assistance:

technohelp@gefran.com

Customer Service:

motioncustomer@gefran.com Ph. +39 O2 96760500 Fax +39 O2 96760278

